

1 **The economic and environmental consequences of implementing nitrogen-efficient**
2 **technologies and management practices in agriculture**

3 Xin Zhang†, Woodrow Wilson School of Public and International Affairs, Princeton
4 University, Princeton, NJ

5
6 Denise Mauzerall, Woodrow Wilson School of Public and International Affairs and the
7 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ

8 Eric Davidson, Woods Hole Research Center, Falmouth, MA

9
10 David Kanter, Earth Institute, Columbia University, New York, NY

11 Ruohong Cai, Environmental Defense Fund, New York, NY

12
13

14 **Key words:**

15
16 nitrogen use efficiency, nitrogen fertilization rate, farmer profits, nitrogen pollution, bio-
17 economic model

18
19

20 **†Corresponding author:**

21 Xin Zhang
22 Email address: xz2@princeton.edu
23 Phone: +1203-859-1211

25 **Abstract**

26 Technologies and management practices (TMPs) that reduce the application of
27 nitrogen fertilizer while maintaining crop yields can improve nitrogen use efficiency (NUE),
28 and are important tools for meeting the dual challenges of increasing food production and
29 reducing nitrogen pollution. However, because farmers operate to maximize their profits,
30 incentives to implement TMPs are limited, and, TMP implementation will not always reduce
31 nitrogen pollution. Therefore, we have developed the NUE Economic and Environmental
32 impact analytical framework (NUE³) to examine the economic and environmental
33 consequences of implementing TMPs in agriculture, with a specific focus on farmer profits,
34 nitrogen fertilizer consumption, nitrogen losses, and cropland demand.

35 Our analytical analyses show that TMPs' impact on farmers economic decision-
36 making and the environment is affected by how TMPs change the yield ceiling and the
37 nitrogen fertilization rate at the ceiling, as well as how the prices of TMPs, fertilizer, and
38 crops vary. TMPs that increase the yield ceiling appear to create a greater economic
39 incentive for farmers than TMPs that do not, but may result in higher nitrogen application
40 rates and excess nitrogen losses. Nevertheless, the negative environmental impacts of
41 certain TMPs could be avoided if their price stays within a range determined by TMP yield
42 response, fertilizer price, and crop price. We use a case study on corn production in the
43 Midwest U.S. to demonstrate how NUE³ can be applied to farmer's economic decision-
44 making and policy analysis.

45 Our NUE³ framework provides an important tool for policy makers to understand
46 how combinations of fertilizer, crop, and TMP prices affect the possibility of achieving win-
47 win outcomes for both farmers and the environment.

48 **Introduction**

49 Improving nitrogen use efficiency (NUE) in crop production worldwide has been
50 proposed as a strategy for meeting food demand, slowing environmental degradation, and
51 mitigating climate change (Cassman et al., 2003; Davidson, 2012; Foley et al., 2011;
52 Johnson et al., 2007; Tilman et al., 2011; UNEP, 2013). Although nitrogen (N) fertilizer is
53 critical in boosting crop yields and reducing pressure to expand land under cultivation, it
54 has profound environmental impacts. The production of N fertilizer is an energy-intensive
55 process (Grassini et al., 2011; Zhang et al., 2013) and its use frequently leads to reactive N
56 losses including nitrate leaching, ammonia volatilization, and nitrous oxide emissions,
57 which affect water quality, air quality, ozone layer depletion, and climate change (Galloway
58 et al., 2003; Ravishankara et al., 2009; Reay et al., 2012). In practical terms, NUE
59 improvement means that more food is produced with less N fertilizer, reducing
60 environmental impacts as a result (Fageria and Baligar, 2005). As agronomic research has
61 shown, technologies and management practices (TMPs), such as cultivar improvement,
62 precision fertilizer application, nitrification inhibitors, and controlled-release fertilizers,
63 can improve NUE at the farm scale by achieving standard yields using less N fertilizer
64 (Akiyama et al., 2010; IFA, 2007). Consequently, implementing TMPs is crucial for
65 improving NUE and reducing N pollution (Fageria and Baligar, 2005). TMPs are different
66 from Best Management Practices (BMPs) in that inputs are optimized in BMPs to reach
67 production and environmental targets, while only some, but not all TMPs, could qualify as
68 optimized BMPs.

69 Although more TMPs have become both available and affordable and NUE has
70 increased in some regions, NUE has stagnated globally and even decreased in many

71 developed and developing countries in recent decades (Cassman et al., 2003). Coupled
72 with increasing N fertilizer consumption, this has led to increasing levels of N pollution
73 (Conant et al., 2013). The apparent discrepancy between the increasing availability of more
74 efficient technologies and increasing levels of N pollution indicates that TMP effectiveness,
75 availability and price are not the only factors that determine N pollution, but that other
76 economic factors, such as fertilizer and crop prices, need to be taken into account (Knapp
77 and Schwabe, 2008; Larson et al., 1996; Preckel et al., 2000; Sheriff, 2005; Sylvester-
78 Bradley and Kindred, 2009). Consequently, in order to investigate how implementing
79 TMPs affects the environmental impact of crop production, including N fertilizer
80 consumption, N losses, and cropland demand, we need to consider two additional elements:
81 1) how TMPs change the yield response to N inputs; 2) how changing prices for TMP,
82 fertilizer and crops affect yields, N application rates, resulting NUE, and excess N loss to the
83 environment.

84 To date, several models have been developed that characterize yield response to N
85 input in order to provide pre-planting, in-season, or post-season recommendations on N
86 application rates (Fageria and Baligar, 2005; Janssen et al., 1990; Setiyono et al., 2011; Yang
87 et al., 2004). Most process-based and empirical models suggest that as the yield level
88 approaches its potential, there is a decreasing yield response to additional N application.
89 This relationship has been described using various forms of yield response functions,
90 including spherical-plateau, exponential, and quadratic-plateau (Jaynes, 2011), with the
91 latter often being employed to determine economically optimal N fertilization rates (EONR)
92 (Cerrato and Blackmer, 1990; Hong et al., 2007; Sawyer et al., 2006; Yadav et al., 1997). In
93 the U.S. and Europe, the yield response curve and the fertilizer-crop price ratio are

94 commonly used to provide recommendations to farmers on optimal N application rates
95 (Sawyer et al., 2006; Sylvester-Bradley and Kindred, 2009).

96 Studies in agricultural economics are increasingly using non-linear yield responses
97 characterized by field experiments or biological models to investigate farmer decisions
98 regarding N inputs, and how these decisions are affected by risk factors and policies, such
99 as nitrogen taxes and crop insurance (Horowitz and Lichtenberg, 1993; Huang and LeBlanc,
100 1994; Larson et al., 1996; Isik and Khanna, 2003; Sheriff, 2005; Knapp and Schwabe, 2008).

101 Several recent studies integrate biological and economic dynamics into a single model to
102 better characterize temporal and spatial heterogeneity of yield responses, and provide a
103 better evaluation on the effect of a nitrogen tax (Isik and Khanna, 2003; Knapp and
104 Schwabe, 2008; Mérél et al., 2014). However, few studies have considered the impact of
105 more efficient technologies and management practices on yield response. In addition, many
106 studies focus solely on the nitrate pollution in water when considering the environmental
107 impacts of excess N use, instead of an integrated assessment of reactive nitrogen's
108 environmental impacts throughout the nitrogen cascade. A detailed literature review on
109 this subject is included in the supplementary materials.

110 Here we present a new analytical framework based on yield response curves and
111 profit maximization objectives in order to investigate the impact of TMP implementation
112 on farmer profits and the environment, including N fertilizer consumption, N losses, and
113 cropland demand. Taking such a broad view is critical for evaluating the likelihood of
114 farmer adoption of TMPs and their resulting environmental consequences. In turn, using a
115 case study of corn production in the Midwest U.S., we demonstrate the impact of
116 implementing TMPs on economic and environmental outcomes, and how such impacts

117 could be affected by TMP price, fertilizer price, and crop price. Then, using analytical
118 approaches, we examine whether the findings on a single farm could be relevant to the
119 heterogeneous conditions found at the regional scale. We conclude by examining the
120 policy implications of implementing TMPs that attempt to achieve environmental goals.

121 **Method: description of NUE³ framework**

122 Our framework includes three components (Figure 1): 1) a yield response module,
123 using a quadratic-plateau yield response function to characterize yield response to N
124 application; 2) an optimization module, optimizing the N application rate for maximizing
125 farmer profits based on a cost-benefit analysis; and 3) an evaluation module, comparing
126 and evaluating the impact of TMP implementation on farmer profits and the environment
127 (including N application rate, excess N, and potential demand for cropland).

128 **Yield response module**

129 Crop yield is affected by many factors including climate and soil conditions,
130 management practices, and nutrient input. Among these factors, insufficient nitrogen can
131 significantly limit yield, especially when the soil nitrogen supply is already low (Cassman et
132 al., 2003). Therefore, we consider yield (Y) as a function of N application rate (X), which
133 includes N inputs through fertilizer, manure, and biological fixation. For a farm without
134 manure application and N fixing crops, the N application rate is the same as the N
135 application rate. The format of the function is a quadratic-plateau yield response
136 relationship, which is commonly used to determine optimal N application rates (Cerrato
137 and Blackmer, 1990; Sawyer et al., 2006)

138
$$Y = \begin{cases} a + bX + cX^2 & (X \leq -b/2c) \\ a - b^2/4c & (X > -b/2c) \end{cases} \quad (1)$$

139 In the equation, a, b, and c are coefficients of the yield response curve with $a > 0$, $b > 0$, and
 140 $c < 0$. The coefficients can be determined by fitting yield and N application data to the
 141 function for crops grown using the same management practices. Uncertainties in the
 142 parameter estimation can be attributed to year-to-year variation in weather and/or
 143 heterogeneity of the soil. The yield response function can also be written with the
 144 following more intuitive parameters:

145
$$Y = \begin{cases} Y_0 + \frac{2(Y_{max} - Y_0)}{X_{max}}X - \frac{(Y_{max} - Y_0)}{X_{max}^2}X^2 & (X \leq X_{max}) \\ Y_{max} & (X > X_{max}) \end{cases} \quad (2)$$

146 In the equation, Y_0 is the yield level without N application ($X_0 = 0$), Y_{max} is the maximum
 147 potential yield, and X_{max} is the N application rate when the yield first reaches the yield
 148 ceiling (the maximum yield). In addition, $Y_{max} > Y_0 > 0$ and $X_{max} > 0$.

149 NUE has been defined in many ways in the literature (Fageria and Baligar, 2005),
 150 and in this study we will use two different definitions to calculate NUE. One is apparent
 151 nitrogen recovery efficiency (NUE_r , measured in kg N harvested kg⁻¹ N applied – Equation
 152 3), which is the percentage of N fertilizer applied that is recovered in the harvested crop;
 153 and the other is the partial factor productivity of applied N (NUE_p , measured in kg grain
 154 yield kg⁻¹ N applied – Equation 4), which is the ratio of crop yield to N fertilizer applied:

155
$$NUE_r = \frac{(Y - Y_0) \cdot NC}{X} \quad (3)$$

156
$$NUE_p = \frac{Y}{X} \quad (4)$$

157 where NC is the nitrogen content of the crop (kg N per kg crop product) (Bouwman et al.,
 158 2005). We use both of these NUE definitions here because $(1 - NUE_r)$ is a good indicator

159 of N lost to the environment, while NUE_p is a direct measure of yield response to N input.

160 NUE_p data is more available on both farm and global scales.

161 To evaluate the impact of TMPs on the environment, we use three indicators:

162 1) The N application rate (X). The application rate is examined because the
163 production of N fertilizer is a very energy-intensive process, and fertilizer is a major energy
164 input for crop production (Grassini et al., 2011; Zhang et al., 2013).

165 2) Planting area (PA) needed for a given production level. The implementation of
166 some TMPs may result in higher yield levels, which would lead to external environmental
167 benefits, such as reduce the demand for conversion of native vegetation to extensive (low
168 productivity) forms of agriculture. To evaluate TMPs' land-sparing benefits, we calculate
169 the relative change of cropland demand after implementing TMPs, given the same
170 production goal (P). As a result, the planting area needed to reach a production level (P)
171 can be written as $PA = P/Y$.

172 3) Excess N (N_{exc}). We define excess N as the nitrogen applied to cropland that is
173 not taken up by crops (equation 5), and assume it is lost to the environment in a variety of
174 forms, with negative environmental impacts occurring along the nitrogen cascade
175 (Galloway et al., 2003).

$$176 \quad N_{exc} = (1 - NUE_r) \cdot X \quad (5)$$

177 Admittedly, nitrogen dynamics in soil is very complex, which involves processes such as
178 plant uptake, immobilization, mineralization, nitrification, denitrification, and leaching.
179 Nitrogen left in the environment may accumulate as soil nitrogen, but we assume that, over
180 the long term, the changing rate of soil nitrogen stock is negligible compared to the

181 nitrogen input, including fertilizer, biological fixation, manure, and deposition (Bouwmanet
 182 al., 2005; Cherry et al., 2008; Oenema et al., 2003; Sheldrick et al., 2002).

183 Efforts to monetize the environmental costs of N pollution are relatively new and
 184 must be considered preliminary (Birch et al., 2011; Brink et al., 2011; Compton et al., 2011;
 185 Gu et al., 2012). Nevertheless, as an initial effort to put environmental costs into
 186 perspective with profits, we assume that the environmental cost (EC) of N fertilizer
 187 application can be estimated by the amount of N lost in each of the four reactive N forms (j :
 188 N_2O , NO_3^- , NO_x , NH_3) and the resulting damage costs (DC_j) to human health (eg. adverse
 189 consequences of nitrate water pollution and air pollution resulting from fine particulate
 190 and ozone pollution from NO_3^- , NO_x and NH_3 emissions), and the environment (eg.
 191 increased climate change from N_2O emissions, losses of biodiversity and ecosystem
 192 services from eutrophication of changing flora due to excess NO_3^-) (Brink et al., 2011;
 193 Compton et al., 2011; Gu et al., 2012). The environmental costs (EC) are:

$$194 \quad EC = \sum_j N_{exc} \cdot Frac_j \cdot DC_j \quad (6)$$

195 where $Frac_j$ is the fraction of N_{exc} released to the environment in each reactive N form.

196 We use the IPCC emission factors (EF_j in Table 1) to estimate the partitioning between
 197 reactive N forms and in this framework assume the fraction of each form of reactive N stays
 198 the same across fields and crops ($Frac_j = EF_j / \sum_j EF_j$). Nevertheless, the proportion of
 199 each reactive N form lost to the environment may differ greatly between regions due to the
 200 climate and soil conditions and management practices, and more studies are needed to
 201 better understand the heterogeneity of the N lost in different forms.

202 **Optimization module: Cost-benefit analysis and nitrogen application rate**

203 Farmers typically seek to maximize profit by optimizing their N application rate and
 204 management practices. To investigate a farmer's decision regarding N fertilizer rate in the
 205 context of different management practices, we define farmer profits (π in equation 7) as
 206 the difference between revenues from crop production and the costs of N fertilizer and
 207 other operating costs ($Cost_{other}$) (USDA, 2013).

208
$$\pi = A \cdot (Y \cdot Pr_{crop} - X \cdot Pr_{fert} - Cost_{other}) \quad (7)$$

209 Pr_{crop} and Pr_{fert} are the prices of the crop sold and the N fertilizer applied per hectare,
 210 respectively, and A is farm size in hectares.

211 Assuming farmers adjust their N application rates to maximize their net profit (π),
 212 the optimal N application rate (X^*) can be derived from equations (2) and (7) based on the
 213 concept that marginal revenue equals marginal cost when profit is maximized.

214
$$X^* = X_{max} \left[1 - \frac{R \cdot X_{max}}{2(Y_{max} - Y_0)} \right] \quad (8)$$

215 where R is the fertilizer-to-crop price ratio (Pr_{fert}/Pr_{crop}). The corresponding profit
 216 maximizing yield (Y^*), net profit (π^*), NUE (NUE_r^* and NUE_p^*), and excess N ($N_{exc,\pi max}$)
 217 are:

218
$$Y^* = Y_{max} - \frac{R^2 \cdot X_{max}^2}{4(Y_{max} - Y_0)} \quad (9)$$

219
$$\pi^* = A \left[\frac{Pr_{fert}^2 \cdot X_{max}^2}{4(Y_{max} - Y_0) Pr_{crop}} - Pr_{fert} \cdot X_{max} - Cost_{other} + Pr_{crop} \cdot Y_{max} \right] \quad (10)$$

220
$$NUE_r^* = NC \left[\frac{Y_{max} - Y_0}{X_{max}} + \frac{R}{2} \right] \quad (11)$$

221
$$NUE_p^* = \frac{R^2 \cdot X_{max}^2 - 4Y_{max}^2 + 4Y_0 Y_{max}}{4X_{max}(Y_0 - Y_{max}) + 2R \cdot X_{max}^2} \quad (12)$$

222
$$N_{exc}^* = \frac{(2Y_0 - 2Y_{max} + R \cdot X_{max}) \cdot (2X_{max} + 2NC \cdot Y_0 - 2NC \cdot Y_{max} - NC \cdot R \cdot X_{max})}{4(Y_0 - Y_{max})} \quad (13)$$

223

224 As a result, if the production function remains constant for a given farm (ie. Y_0 , Y_{max} ,
 225 and X_{max} in the yield response function do not change), then when the fertilizer-to-crop
 226 price ratio (R) increases, N application rates decrease to maximize farmer profits according
 227 to equation 8. Consequently, NUE_r^* and P/Y^* increase, while Y^* and N_{exc}^* decrease
 228 (according to equation 5,9,11, and 13). The impact of an increase in R on profit is more
 229 complex. By examining equation 8 and 10, we find that as long as $X^* \geq 0$, the maximum
 230 profit (π^*) decreases as fertilizer price increases or crop price decreases.

231 **Evaluation module: TMP impact on farmer profits and the environment**

232 Based on field studies on the yield response with and without implementing a TMP_i , we can
 233 derive two yield response functions using the Yield response module (Figure 1). Then, with
 234 the price information for the TMP_i , crop, and fertilizer, the optimized N fertilizer
 235 application rate and resulting excess N, planting area, and farmer profits, can be calculated
 236 for a farm with $(X_i^*, N_{exc,i}^*, PA_i^*, \pi_i^*)$ and without the implementation of a TMP_i $(X^*,$
 237 $N_{exc}^*, PA^*, \pi^*)$. Details about parameters can be found in the supplementary materials. The
 238 impact of a TMP on farmer profits and the environment can therefore be evaluated by:

239 $d\pi^* = \pi_i^* - \pi^*,$

240 $dX^* = X_i^* - X^*,$

241 $dN_{exc}^* = N_{exc,i}^* - N_{exc}^*, \text{ and}$

242 $dPA^* = PA_i^* - PA^*.$

243

244 When $d\pi^* > 0$, $dX^* < 0$, $dN_{exc}^* < 0$, and $dPA^* < 0$, implementing a TMP has a
 245 positive impact on farmer profits and all environmental parameters. The signs of these

246 factors are determined by the shape of the production functions and also by the price of the
247 fertilizer, crop, and TMP.

248 **Case study for Midwestern U.S. Corn production**

249 We show here how our framework can be applied to investigate the economic and
250 environmental consequences of implementing TMPs. We examine the implementation of
251 three different TMPs on corn, using a yield response function for Midwestern U.S. corn, and
252 examine how farmer profits and various environmental parameters change under different
253 price scenarios. In addition, we repeat the analysis for several other yield response
254 functions in the literature, to test the sensitivity of our results to the shape of the yield
255 response curve.

256 Due to different regional soil and climate conditions, the corn yield response to N
257 application varies significantly (Below et al., 2007; Below et al., 2009; Boyer et al., 2013;
258 Cerrato and Blackmer, 1990; Gentry et al., 2013; Haegele and Below, 2013; Sawyer et al.,
259 2006; Setiyono et al., 2011; Yadav et al., 1997). We first use the yield response function in
260 Below et al. (2007) as the baseline function in the NUE³ framework, because it was derived
261 from 37 on-farm studies across five Midwestern states (including Indiana, Illinois, Iowa,
262 Minnesota, and North Dakota) (Below et al., 2007; Gentry et al., 2013; Haegele and Below,
263 2013), and lies approximately in the middle of reported yield response functions. Baseline
264 crop and fertilizer prices and farmer's costs were determined by statistics for corn
265 production in the U.S. (Table 2) (USDA ERS, 2013).

266 Numerous studies show how TMPs affect corn yield response to N input (Blaylock et
267 al., 2005; Ciampitti and Vyn, 2012; Fageria and Baligar, 2005; Gehl et al., 2005; Sylvester-

268 Bradley and Kindred, 2009). Implementing TMPs can change yield response curves in
269 three ways (Table 3), (Below et al., 2007; Cassman et al., 2003):

270 TMP 1: Achieves the standard yield ceiling ($Y_{max,1} = Y_{max}$) at a lower N application

271 rate ($X_{max,1} < X_{max}$);

272 TMP 2: Reaches a higher yield ceiling ($Y_{max,2} > Y_{max}$) at the same or lower

273 application rate ($X_{max,2} \leq X_{max}$);

274 TMP 3: Reaches a higher yield ceiling ($Y_{max,3} > Y_{max}$) at a higher application rate

275 ($X_{max,3} > X_{max}$).

276 The yield responses for the these TMP examples are reported in different formats
277 and with different baselines. As an example of TMP1, Gehl et al. (2005) examined the field
278 trial data at a variety of locations in Kansas, U.S. and concluded that, in irrigated soils side
279 dressing can reach the same yield level as soils without side dressing but with 40% less N
280 fertilizer. An example of TMP2 is the change in yield response functions with and without
281 the use of Environmentally Smart Nitrogen (ESN, a controlled-release nitrogen fertilizer)
282 derived from extensive field experiments in U.S. corn belt (Blaylock et al., 2005; Blaylock,
283 2013; Nelson et al., 2008). An example of TMP3 is reported by Ciampitti and Vyn (2012)
284 who characterize the change in yield curves resulting from improved crop cultivars. They
285 examine the yield response function of corn hybrids in the “Old Era” (1940-1990) and
286 “New Era” (1991-2011), based on field trials documented in the literature. Similar further
287 improvements could be made as still newer hybrids are developed to replace those widely
288 adopted since 1991. These three examples are not meant to be representative of all TMPs,
289 but rather to demonstrate the value of an analytical framework for understanding how

290 technologies and management practices can affect yields and cost-price ratios in multiple
 291 ways.

292 To synthesize results from the literature and to compare the impact of TMPs on
 293 yield response, we normalize all yield response functions by the minimum and maximum
 294 yield levels and the corresponding N application rate without applying TMP_i ($Y_i' =$

295 $\frac{Y_i - Y_0}{Y_{max} - Y_0}, X_i' = \frac{X_i}{x_{max}}$). As a result, the normalized yield response function is:

$$296 Y_i' = \begin{cases} A_i + B_i X_i' + C_i X_i'^2 & (X_i' \leq -B_i/2C_i) \\ -B_i^2/4C_i + A_i & (X_i' > -B_i/2C_i) \end{cases}$$

297 A_i, B_i, C_i are the parameters for the normalized yield response function. Figure 2 and Table
 298 3 show the normalized yield response curves from Gehl et al. (2005)(side dressing),
 299 Blaylock (2013)(ESN), and Ciampitti and Vyn (2012)(improved hybrids) using the process
 300 described above. The three normalized yield response curves demonstrate three examples
 301 of how TMPs can improve the baseline yield response described in Table 3.

302 The yield response function after applying each TMP was derived according to the
 303 baseline yield response function and normalized impact of each TMP. This derivation is
 304 based on the assumption that the mathematical formulations of TMPs in the fifth column in
 305 Table 3 can be applied to other farms in the Midwest U.S., although the parameters may
 306 change based on local circumstances. The resulting yield response functions are used as
 307 input in the following analysis.

308 **Case study results**309 **Economic and environmental impact of fertilizer and crop prices**

310 To explore the economic and environmental impact of fertilizer and crop prices, we
311 use as an example the fertilizer-to-corn price ratio in 2011 for a farm having the same
312 production function as Below et al. (2007). We find the economically optimal N application
313 rate for maximizing farmer profits, according to equations 8-13, was 134 kg N ha⁻¹. The
314 resulting NUE_r and excess N were 0.39 kg N kg⁻¹ N and 82 kg N ha⁻¹, respectively.

315 Given the same farm and same nitrogen management practices, the economically
316 optimal nitrogen application rate declines if the fertilizer-to-corn price ratio increases due
317 to an increase in fertilizer price (Figure 3a). As a result, farmer profits decrease (Figure 3a),
318 NUE_r improves (Figure 3b), excess N loss decreases (Figure 3c), and demand for planting
319 area (PA) increases. Similarly, the same increase in the fertilizer-to-corn price ratio caused
320 by a decreasing corn price will also lead to the same reduction in N application rate and
321 excess N, and the same improvement in NUE, but will lead to a much steeper decrease in
322 farmer profits.

323 The impact of fertilizer and crop prices on economic (farmer profits), environmental
324 (N application rate, excess N, PA) and efficiency (NUE_r and NUE_p) outcomes will follow the
325 same trends in farms that do and do not implement a TMP (Figure 4, 5, 6).

326 **Economic and environmental impact of TMP implementation**

327 The impact of TMP implementation on farmer profits and the environment is closely
328 related to TMP costs, which are defined as costs added to the previous farming operations
329 solely due to implementing the TMP. There are two pricing schemes for our TMP cases. 1)

330 The TMP cost is independent of the N application rate (e.g., side dressing and improved
 331 hybrids are usually priced as \$ ha⁻¹). Therefore farmer profits in equation 7 become
 332 $\pi = A \cdot (Y \cdot Pr_{crop} - X \cdot Pr_{fert} - (Cost_{other} + Pr_{TMP,i}))$, and $Pr_{TMP,i}$ is the price of TMP_i. 2)
 333 The TMP cost depends on the N application rate (e.g., ESN is usually priced as \$ kg N⁻¹).
 334 Therefore farmer profits become $\pi = A \cdot (Y \cdot Pr_{crop} - X \cdot (Pr_{fert} + Pr_{TMP,i}) - Cost_{other})$.
 335 In the following two sections, we examine the economic and environmental impact of
 336 implementing each TMP case under \$ ha⁻¹ and \$ kg N⁻¹ price schemes.

337 ***Economic and environmental impact of TMPs priced as \$ ha⁻¹***

338 When TMPs are priced as \$ ha⁻¹, the optimized N application rate for each TMP is
 339 not affected by TMP price, and is determined by the new yield response function and the
 340 baseline fertilizer and crop price scenario (the circles noted with number 1 in Figure 4).
 341 The horizontal distance between the circle labeled with “1” for each TMP and the vertical
 342 dotted line denotes the TMP’s impact on N application rate. Among the three cases we
 343 investigated, only side dressing leads to a significant reduction in N application rate by
 344 38%, ESN reduces the N rate by only 5%, while the use of improved hybrids increase the N
 345 rate by 22%.

346 Similarly, the implementation of side dressing and ESN reduces excess N by 63%
 347 and 18%, respectively, while improved hybrids increase excess N by 12% (Figure 5;
 348 compare the circles labeled “1” for the TMPs relative to the base case).

349 In contrast, implementing improved hybrids increases the yield. Therefore, 15%
 350 less land is required to meet the same production demand. Side dressing has a negligible
 351 impact on land sparing, while ESN may reduce cropland demand by 5% for the same total
 352 crop production.

353 The potential profit increase by implementing a TMP is the vertical distance
354 between the circle labeled with "1" and the horizontal dotted line. In this example, TMP
355 implementation can increase farmer profits only when their costs are lower than \$50 ha⁻¹,
356 \$138 ha⁻¹, and \$391 ha⁻¹, respectively. Given the same price for all TMPs, side dressing
357 (the example for TMP1) has the lowest economic incentive for farmer adoption. In fact,
358 even if it were free, the potential profit increase from using side dressing is only about 6%,
359 which is smaller than the year-to-year variation in a farmer's profit under conventional
360 management. The lack of a strong economic incentive discourages farmers from adopting
361 side dressing. In contrast, improved hybrids offers the largest profit potential - as much as
362 50% over their profit without hybrids. Presumably, the same would be true if even better
363 hybrids were to replace currently used hybrids. However, to achieve this higher profit, a
364 higher N rate is required, which results in more energy consumption and likely more
365 reactive N pollution.

366 ***Economic and environmental impact of TMPs priced as \$ kg N⁻¹***

367 When TMPs are priced as \$ kg N⁻¹, the optimized N rate for each TMP will shift
368 towards the optimized N rate at higher fertilizer prices, considering $Pr_{fert,i} = Pr_{fert} +$
369 $Pr_{TMP,i}$. Taking ESN as an example, if applying ESN increases the cost by \$0.91 kg N⁻¹
370 (equivalent to baseline fertilizer price), the optimized N application rate for ESN is 119 kg
371 N ha⁻¹ (blue circle with number 2 in Figure 4). Even though two of the TMP cases, side
372 dressing and improved hybrids, are not usually priced as \$ kg N⁻¹, we still examine their
373 dynamics here because 1) their cost could be connected to N application rates by policies
374 such as a nitrogen tax; and 2) other TMPs (e.g. controlled-released fertilizers) that are

375 priced as \$ kg N⁻¹ may have a similar impact on yield response functions in some
 376 circumstances.

377 As the TMP price increases (e.g., the blue circle moves towards 4 and 10 in Figure 4
 378 and Figure 5), the overall expenditure related to N rate ($Pr_{fert,i}$) increases. This leads to a
 379 decrease in the optimal N application rate, to the point at which marginal revenue matches
 380 marginal cost, and results in decreasing excess N and farmer profits. TMPs in the upper-
 381 left quadrant have a positive impact on both farmer profit and the environment (evaluated
 382 by N application rates in Figure 4 or excess N in Figure 5). TMPs in the upper-right
 383 quadrant have a positive impact on farmer profit, but a negative impact on the
 384 environment. By contrast, TMPs in the lower-left quadrant have the opposite impact as
 385 those in the upper right. No TMPs fall in the lower right quadrant, because by definition
 386 TMPs cannot have both a negative impact on farmer profits and the environment. Among
 387 the three TMP cases, only improved hybrids can possibly lead to a higher N rate when the
 388 TMP price is lower than \$2.17 kg N⁻¹. Similarly, only improved hybrids can possibly lead to
 389 higher excess N when the TMP price is lower than \$0.80 kg N⁻¹. Overall, higher TMP prices
 390 lead to lower N application rates and lower N losses, but reduce the economic incentive for
 391 their adoption.

392 **Impact of TMP implementation on Nitrogen Use Efficiency**

393 The implementation of TMPs do not necessarily lead to NUE improvement. The
 394 impact of TMP implementation on NUE is different for NUE_r and NUE_p , and also varies
 395 under different TMP pricing schemes.

396 When TMPs are priced in \$ ha⁻¹, the implementation of side dressing, ESN, and
 397 improved hybrids all lead to improvements in NUE_r (compare the circles labeled "1" in

398 Figure 6a). However, the implementation of improved hybrids leads to an insignificant
 399 change in NUE_p , while the other two TMP cases lead to improvements in NUE_p (compare
 400 the circles labeled with "1" in Figure 6b).

401 When TMPs are priced in \$ kg N⁻¹, the TMP price affects the impact of TMP
 402 implementation on NUE. As the price of a TMP increases (e.g., the blue circle moves
 403 towards 4 and 10 in Figure 6), both NUE_r and NUE_p increase while the economic
 404 incentives for adopting TMPs decrease. Therefore a maximum NUE_r and NUE_p that does
 405 not reduce farmer profits relative to the baseline exists for each TMP. For example, the
 406 maximum NUE_r levels for side dressing, ESN, and improved hybrids are 0.65 kg N kg N⁻¹,
 407 0.51 kg N kg N⁻¹, and 0.52 kg N kg N⁻¹, respectively (the NUE_r level where the TMP line
 408 crosses the horizontal dotted line in Figure 6a).

409 **TMP options to achieve positive environmental and economic impact**

410 Overall, the implementation of a TMP can have a positive impact on farmer profits
 411 and all environmental parameters, including optimal N application rates (X^*), excess N loss
 412 (N_{exc}^*), and planting area (PA^*). Figure 7 summarizes the impact of all three TMP cases on
 413 the economic and environmental parameters and highlights the TMP price ranges that
 414 create positive outcomes for all examined parameters.

415 **Side dressing (TMP1)** has a positive environmental impact on X^* and N_{exc}^* despite
 416 the TMP price variation, but has a negligible impact on PA^* . However, to increase farmer
 417 profits (Figure 7a), TMP price should be lower than \$50 ha⁻¹ or \$0.61 kg N⁻¹.

418 **ESN (TMP2)** only increases farmer profits when its price is lower than \$138 ha⁻¹ or
 419 \$1.13 kg N⁻¹. At this price (or lower), implementing ESN would have a positive impact on all

420 three environmental parameters (Figure 7b). The price of ESN is currently \$0.44 kg N⁻¹,
421 within the range for economic and environmental benefits (Blaylock, 2013).

422 **Improved hybrids (TMP3)** lead to a negative impact on the environment by
423 increasing X^* and N_{exc}^* , if its cost is independent of N application rate. If the nitrogen-
424 dependent price of improved hybrids is between 2.17 \$ kg N⁻¹ and 2.69 \$ kg N⁻¹ (Figure 7c),
425 a positive impact on all environmental parameters and farmer profits occurs. If the sole
426 environmental target were lower excess N, the price of the improved hybrid should be
427 between \$0.80 kg N⁻¹ and \$2.69 kg N⁻¹. Even though the improved hybrid is not currently
428 priced in kg N⁻¹, such a price adjustment for ensuring a positive environmental impact
429 could be achieved by several policies, such as a nitrogen tax.

430 Applying different yield response functions in the literature to the analysis above
431 lead to similar results, which are summarized in the supplementary materials. To ensure
432 positive economic and environmental outcomes for all yield response functions used in the
433 sensitivity test, the price for side dressing should be lower than \$50 ha⁻¹ or \$0.61 kg N⁻¹;
434 and the price for ESN should be lower than \$138 ha⁻¹ or \$0.86 kg N⁻¹ (Table 4). No pricing
435 scheme is feasible for improved hybrids to increase farmer profits and reduce N
436 application at the same time. If reducing excess N is the sole environmental target, then
437 charging a nitrogen tax within a range of \$0.89- \$1.96 kg N⁻¹ would help to achieve positive
438 economic and environmental outcomes, given all of the assumptions of these calculations.

439 **Monetized environmental benefits of excess N reduction**

440 Using preliminary estimates of monetized environmental costs of reactive N
441 pollution, the cost to society of N lost from cropland is comparable to farmer profits (Figure
442 5). For example, in the baseline scenario, the environmental cost of N pollution due to

443 excess N is approximately $\$2756 \text{ ha}^{-1}$ ($\$674 \text{ ha}^{-1}$ - $\$4660 \text{ ha}^{-1}$, calculated by equation 6),
444 about three times farmer profits per ha. Implementing side dressing can reduce
445 environmental costs to $\$1030 \text{ ha}^{-1}$ ($\$252 \text{ ha}^{-1}$ - $\$1742 \text{ ha}^{-1}$), a savings of $\$1726 \text{ ha}^{-1}$ ($\$422 \text{ ha}^{-1}$ -
446 $\$2918 \text{ ha}^{-1}$).

447 This suggests that policies providing additional economic incentives for farmers to
448 adopt TMPs will lead to overall societal benefits. However, this cost-benefit analysis is not
449 only preliminary, but also incomplete. For example, the societal costs of fossil fuel demand
450 and greenhouse gas emissions from the Haber-Bosch process used to produce N fertilizer
451 are not included. Conversely, the benefits to society of producing food at affordable costs
452 to consumers are also not included.

453 Discussion

454 NUE dynamics in TMP implementation

455 For all TMPs that follow the quadratic-plateau yield response pattern, nitrogen use
456 efficiency (including NUE_r and NUE_p) decreases as N application rates increase, due to the
457 diminishing yield response to N application. As a result, the nitrogen use efficiency for each
458 TMP is not a static variable. It is affected by TMP's yield response function and fertilizer-to-
459 crop price ratios.

460 Our case studies suggest that implementing TMPs may have different impacts on
461 NUE_r and NUE_p , and may, counterintuitively, lead to increasing excess N and N application
462 rates in some cases.

463 Improving NUE_r by implementing TMPs does not necessarily result in an increase
 464 in NUE_p . According to equation 3 and 4, $NUE_p = \frac{NUE_r}{NC} + \frac{Y_0}{X}$, therefore if the optimal N
 465 application rate increases, NUE_p may decrease while NUE_r increases from the baseline
 466 case. While NUE_r was improved in all TMP cases, implementing TMP 2 and TMP3 caused
 467 little change in NUE_p (Figure 6b; compare the circles labeled "1" for the TMPs relative to
 468 the base case).

469 Similarly, implementing TMPs can have the counter-intuitive effect of increasing
 470 both NUE_r and excess N when the optimized N application rate increases (equation 5).
 471 However, the increasing NUE_r and N application rate also indicates an increasing yield
 472 level. As a result, implementing such TMPs may have an environmental benefit in sparing
 473 naturally vegetated land from farming.

474 **TMP Profit potential**

475 The weak economic incentive to use side dressing compared to ESN and improved
 476 hybrids also applies to other TMPs that do not raise the baseline yield ceiling in the
 477 baseline (e.g. TMP1 in Table 3 for a corn field in Midwest U.S.). In equation 10, when

478 $R < \frac{\sqrt{(Y_{max}-Y_0)Y_{max}}}{5X_{max}}$, then $\frac{Pr_{fert}^2 \cdot X_{max}^2}{4(Y_{max}-Y_0)Pr_{crop}} < Pr_{crop} \cdot Y_{max}/100$, therefore, we can assume that
 479 $\frac{Pr_{fert}^2 \cdot X_{max}^2}{4(Y_{max}-Y_0)Pr_{crop}}$ is negligible, and the equation can be simplified to

$$480 \pi^* \approx A[-Pr_{fert} \cdot X_{max} - Cost_{other} + Pr_{crop} \cdot Y_{max}] \quad (14)$$

481 The same assumption applies to π_i^* . As a result, the potential profit for implementing TMP;
 482 is $Pr_{crop} \cdot (Y_{max,i} - Y_{max}) - Pr_{fert} \cdot (X_{max,i} - X_{max})$. Therefore, the potential profit for
 483 implementing a TMP is determined by how much the TMP increases the yield ceiling

484 and/or how much the TMP reduces the N application rate at the yield ceiling. Assuming
 485 that $Y_{max,i} - Y_{max} = e \cdot Y_{max}$, and $X_{max,i} - X_{max} = -f \cdot X_{max}$ ($e > 0$ and $f > 0$), the
 486 potential profit increase due to a N application rate reduction can only be equivalent to the
 487 potential profit increase due to a yield ceiling increase, when $\frac{e}{f} = \frac{X_{max}}{Y_{max}} R$.

488 Such an analysis could be applied to most corn farms in the Midwest U.S., because
 489 21 in 22 rainfed farms and all irrigated farms reported in Setiyono et al. (2011) have
 490 $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$ ($R = 4.14$) and $\frac{X_{max}}{Y_{max}} R < 0.1$. As a result, TMPs that can increase yield
 491 ceilings by only 10% (e.g., improved hybrid and irrigation) would have a greater profit
 492 potential than TMPs that solely reduce N application rate at the yield ceiling (TMP1).

493 **TMP price range for positive environmental and economic impact**

494 The TMP price range for positive economic and environmental impact is affected by
 495 how TMPs change the yield response function. To characterize such relations for corn
 496 farms in the Midwest U.S., we simplified the equations for parameters examining TMPs'
 497 environmental and economic impact (Table 5). The simplification is based on the
 498 assumption that $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$, following the analysis in Section 4.2. Table 6
 499 summarizes the conditions that the TMP must meet in order to ensure a positive impact on
 500 each environmental or economic parameter.

501 For TMPs that do not increase the yield ceiling (TMP1), the TMP price should be
 502 lower than $Pr_{fert} \cdot (X_{max} - X_{max,i}) \text{ } \$ \text{ ha}^{-1}$ or $Pr_{fert} \left(\frac{X_{max}}{X_{max,i}} - 1 \right) \text{ } \$ \text{ kg N}^{-1}$ to ensure
 503 profitability, while no condition is needed to obtain a positive or neutral impact on
 504 environmental parameters.

505 TMPs that increase the yield ceilings (TMP2 and TMP3) usually provide a greater
 506 profit margin and land-sparing benefits, but lead to an increase in N application rates and
 507 excess N lost. The requirement for a TMP to reduce N application rates is more strict than
 508 to reduce excess N losses, since TMP2 and TMP3 always have higher yield increases due to
 509 application ($NC[(Y_{max,i} - Y_{0,i}) - (Y_{max} - Y_0)] > 0$).

510 **Impact of fertilizer and crop product prices**

511 TMPs' impact on environmental and economic parameters will shift depending on
 512 changes in the prices of traditional N fertilizer and crop products.

513 For most corn farms in the Midwest U.S. (or any farm that complies with the
 514 condition that $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$), economic incentives for implementing TMP1 and TMP2
 515 (the TMPs that do not increase N application rates at the yield ceiling or $X_{max,i} \leq X_{max}$)
 516 increase as the price for traditional fertilizer increases. However, the environmental
 517 benefits of TMP implementation on N application rate and excess N decrease (Table 6). In
 518 contrast, economic incentives for implementing TMP3 ($X_{max,i} > X_{max}$) decrease as
 519 traditional fertilizer prices increase. The environmental benefits increase with the
 520 fertilizer price only if $\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} > 0$.

521 An increase in crop price provides more economic incentive for farmers to
 522 implement TMP2 and TMP3 (the TMPs that increase yield ceiling or $Y_{max,i} \geq Y_{max}$), but
 523 does not provide additional economic incentives for the implementation of TMP1. The
 524 impact of crop price on environmental benefits is more complex. The environmental
 525 benefits of implementing TMPs increase as the crop price increases for most TMPs, except
 526 TMPs have bigger impact on increasing N applicaiton related cost than NUE improvement

527 at the yield ceiling ($\frac{X_{max,i}^2}{Y_{max,i}-Y_{0,i}} - \frac{X_{max}^2}{Y_{max}-Y_0} > 0$ where a TMP is priced in \$ ha⁻¹; and

528 $\frac{(Pr_{fert}+Pr_{TMP,i})\cdot X_{max,i}^2}{Y_{max,i}-Y_{0,i}} - \frac{Pr_{fert}\cdot X_{max}^2}{Y_{max}-Y_0} > 0$ where a TMP is priced in \$ kg N⁻¹).

529 Policy implications

530 Our analysis suggests that the implementation of TMPs often leads to a reduction in
 531 the N application rate or an improvement in nitrogen use efficiency, but this is not always
 532 the case. The environmental benefits associated with implementing a particular TMP are
 533 also determined by fertilizer, crop, and TMP prices. Therefore policies that affect these
 534 prices can influence outcomes and help achieve desired environmental goals, such as
 535 reducing reactive N pollution or N fertilizer consumption. Even so, designing such policies
 536 involve considering the relevant yield response function and the available TMPs. Our NUE³
 537 framework was developed to investigate the environmental and economic impacts of TMPs
 538 and can be applied to provide qualitative and quantitative analysis of relevant policy
 539 options.

540 Policies that increase fertilizer prices, such as a levying a nitrogen tax or
 541 discontinuing fertilizer subsidies, can reduce N fertilizer consumption and reactive N
 542 pollution in two ways: 1) If TMPs are not available, farmers would need to reduce their N
 543 application rate as the fertilizer-to-crop price ratio increases (Section 4.1). 2) If TMPs are
 544 available, farmers confronting fertilizer price increases would likely adopt TMPs with
 545 lower N application rates (TMP1 and TMP2; $X_{max,i} \leq X_{max}$), especially since the economic
 546 incentives for adopting such TMPs would have increased.

547 When coupled with available TMPs, policies such as ethanol subsidies and market
548 factors that affect crop prices, have a complex impact on N fertilizer consumption and
549 reactive N pollution. When TMPs are not available, higher crop prices could also lead to a
550 higher N application rate that would help maximize the farmer's profit. When TMPs are
551 available, a higher crop price would provide additional economic incentive for farmers to
552 adopt TMPs that have a higher yield ceiling (TMP2 and TMP3; $Y_{max,i} \geq Y_{max}$). Doing so
553 may result in a higher N application rate, which may or may not be counteracted by
554 improved NUE.

555 Subsidizing TMPs typically encourages more efficient nitrogen management in
556 cropland. However, to achieve their intended environmental benefits, these policies would
557 need to be targeted appropriately. For example, to ensure a positive impact on all
558 economic and environmental parameters, the subsidy should adjust the TMP price to
559 ranges similar to those listed in Table 6, which will change as fertilizer and crop prices vary.

560 However, policies that solely provide economic incentives may not be enough to
561 encourage farmers to adopt more efficient nitrogen management practices. Our analysis
562 assumes that farmers will adopt any practice that is optimal for maximizing profit. Some
563 TMPs, such as ESN and precision farming analyzed in our study, can improve farmer
564 profits, but have not been widely applied, mainly due to social and logistical barriers that
565 limit behavioral change among farmers (Prokopy et al., 2008). Consequently, policies to
566 improve NUE must be accompanied by both efforts to build effective communication
567 channels with farmers and to increase their access to TMPs and related technical support.

568 **Conclusions**

569 The implementation of TMPs has complex impacts on farmer profits and the
570 environment. Applying the NUE³ framework to a corn production case in the Midwest U.S.,
571 we found that TMPs that do not increase yield ceilings (TMP1, e.g., side dressing) always
572 lead to a reduction in N application rate and excess N lost. However, they do not increase
573 environmentally desirable land-sparing practices and the economic incentives for farmers
574 to adopt them are small. In contrast, TMPs that increase the yield ceilings (TMP2 and
575 TMP3, e.g., ESN, improved hybrids) have land-sparing environmental benefits and may
576 provide greater economic incentives to farmers. However, implementing these TMPs may
577 lead to one or more negative environmental effects, such as higher N application rates, and
578 more excess N lost to the environment.

579 Our study suggests that price mechanisms that affect fertilizer, crop, or TMP prices
580 can be used to reduce N application rates and excess N losses. However, such mechanisms
581 should be designed only after a thorough investigation of the available TMPs and their
582 economic and environmental impacts. Our analytical framework can provide important
583 input to such investigations and, in turn, to policy design.

584 **Acknowledgements**

585 This work resulted from a conference supported by NSF Research Coordination Network
586 award DEB-1049744 and by the Soil Science Society of America, the American Geophysical
587 Union, The International Plant Nutrition Institute, The Fertilizer Institute, and the
588 International Nitrogen Initiative. We would like to thank Ray Dowbenko for providing the
589 product information of ESN. We thank Tim Searchinger for insightful suggestions.
590

591 **References**

592 Akiyama, H., X.Y. Yan and K. Yagi. 2010. Evaluation of effectiveness of enhanced-efficiency
 593 fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis. *Global Change Biol.* 16: 1837-1846. doi:10.1111/J.1365-2486.2009.02031.X.

596 Below, F.E., M. Uribelarrea, M. Ruffo, S.P. Moose and A.W. Becker. 2007. Triple-stacks, genetics, and biotechnology in improving nitrogen use of corn. In *Proceedings of the 597 37th North Central Extension-Industry Soil Fertility Conference*. p. 5-13.

599 Below, F.E., J.W. Haelgele and M.L. Ruffo. 2009. Technology and Biotechnology of Nitrogen 600 Use for High Yield Corn. In *Proceedings of the American Seed Trade Association 601 annual meeting*. p. 13-22.

602 Birch, M.B.L., B.M. Gramig, W.R. Moomaw, O.C. Doering and C.J. Reeling. 2011. Why Metrics 603 Matter: Evaluating Policy Choices for Reactive Nitrogen in the Chesapeake Bay 604 Watershed. *Environ. Sci. Technol.* 45: 168-174. doi:10.1021/Es101472z.

605 Blaylock, A.D. 2013. Enhancing productivity and farmer profitability in broad-acre crops 606 with controlled-released fertilizers. *International Conference on Enhanced- 607 Efficiency Fertilizers*. Rio de Janeiro, Brazil.

608 Blaylock, A.D., J. Kaufmann and R.D. Dowbenko. 2005. Nitrogen fertilizer technologies. 609 Western Nutrient Management Conference. Salt Lake City, UT. p. 8-13.

610 Bouwman, A.F., G. Van Drecht and K.W. Van der Hoek. 2005. Global and regional surface 611 nitrogen balances in intensive agricultural production systems for the period 1970- 612 2030. *Pedosphere* 15: 137-155.

613 Boyer, C.N., J.A. Larson, R.K. Roberts, A.T. McClure, D.D. Tyler and V. Zhou. 2013. Stochastic 614 Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, 615 and Corn after Soybeans. *J. Agr. Appl. Econ.* 45.

616 Brink, C., H. van Grinsven, B.H. Jacobsen, A. Rabl, I.-M. Gren, M. Holland, et al. 2011. Costs 617 and benefits of nitrogen in the environment. In: M. A. Sutton, C. M. Howard, J. W. 618 Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven and B. Grizzetti, editors, 619 European Nitrogen Assessment. Cambridge University Press, London. p. 513-540.

620 Cassman, K.G., A. Dobermann, D.T. Walters and H. Yang. 2003. Meeting cereal demand while 621 protecting natural resources and improving environmental quality. *Annu. Rev. Env. 622 Resour.* 28: 315-358. doi:10.1146/Annurev.Energy.28.040202.122858.

623 Cerrato, M.E. and A.M. Blackmer. 1990. COMPARISON OF MODELS FOR DESCRIBING CORN 624 YIELD RESPONSE TO NITROGEN-FERTILIZER. *Agron. J.* 82: 138-143.

625 Ciampitti, I.A. and T.J. Vyn. 2012. Physiological perspectives of changes over time in maize 626 yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. 627 *Field Crop Res.* 133: 48-67. doi:10.1016/J.Fcr.2012.03.008.

628 Compton, J.E., J.A. Harrison, R.L. Dennis, T.L. Greaver, B.H. Hill, S.J. Jordan, et al. 2011. 629 Ecosystem services altered by human changes in the nitrogen cycle: a new 630 perspective for US decision making. *Ecol. Lett.* 14: 804-815. doi:10.1111/J.1461- 631 0248.2011.01631.X.

632 Conant, R.T., A.B. Berdanier and P.R. Grace. 2013. Patterns and trends in nitrogen use and
 633 nitrogen recovery efficiency in world agriculture. *Global Biogeochem. Cycles* 27:
 634 558-566. doi:10.1002/Gbc.20053.

635 Davidson, E.A. 2012. Representative concentration pathways and mitigation scenarios for
 636 nitrous oxide. *Environ. Res. Lett.* 7. doi:10.1088/1748-9326/7/2/024005.

637 De Klein, C., R. S. A. Novoa, S. Ogle, K. A. Smith, P. Rochette, T. C. Wirth, B. G. McConkey, A.
 638 Mosier, and K. Rypdal. 2006. N_2O emissions from managed soils, and CO_2 emissions
 639 from lime and urea application. In: H. S. Eggleston et al., editors, 2006 IPCC
 640 Guidelines for National Greenhouse Gas Inventories. Vol 4. IGES, IPPC, Kanagawa,
 641 Japan.,p. 11.11-11.54.

642 Dobermann, A., S. Blackmore, S.E. Cook and V.I. Adamchuk. 2004. Precision Farming:
 643 Challenges and Future Directions. "New directions for a diverse planet".
 644 Proceedings of the 4th International Crop Science Congress, Brisbane, Australia.

645 Fageria, N.K. and V.C. Baligar. 2005. Enhancing nitrogen use efficiency in crop plants. *Adv.*
 646 *Agron.* 88: 97-185.

647 Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, et al. 2011.
 648 Solutions for a cultivated planet. *Nature* 478: 337-342. doi:10.1038/Nature10452.

649 Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, et al.
 650 2003. The nitrogen cascade. *Bioscience* 53: 341-356. doi:10.1641/0006-
 651 3568(2003)053[0341:Tnc]2.0.Co;2.

652 Gehl, R.J., J.P. Schmidt, L.D. Maddux and W.B. Gordon. 2005. Corn yield response to nitrogen
 653 rate and timing in sandy irrigated soils. *Agron. J.* 97: 1230-1238.
 654 doi:10.2134/Agronj2004.0303.

655 Gentry, L.F., M.L. Ruffo and F.E. Below. 2013. Identifying Factors Controlling the Continuous
 656 Corn Yield Penalty. *Agron. J.* 105: 295-303. doi:Doi 10.2134/Agronj2012.0246.

657 Godwin, R.J., G.A. Wood, J.C. Taylor, S.M. Knight and J.P. Welsh. 2003. Precision farming of
 658 cereal crops: a review of a six year experiment to develop management guidelines.
 659 *Biosyst. Eng.* 84: 375-391. doi:10.1016/s1537-5110(03)00031-x.

660 Grassini, P., J. Thorburn, C. Burr and K.G. Cassman. 2011. High-yield irrigated maize in the
 661 Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic
 662 practices. *Field Crop Res.* 120: 142-150. doi:10.1016/j.fcr.2010.09.012.

663 Gu, B., Y. Ge, Y. Ren, B. Xu, W. Luo, H. Jiang, et al. 2012. Atmospheric reactive nitrogen in
 664 China: Sources, recent trends, and damage costs. *Environ. Sci. Technol.* 46: 9420-
 665 9427.

666 Haegele, J.W. and F.E. Below. 2013. Transgenic corn rootworm protection increases grain
 667 yield and nitrogen use of maize. *Crop Science* 53: 585-594.

668 Halvorson, A.D., A.R. Mosier, C.A. Reule and W.C. Bausch. 2006. Nitrogen and tillage effects
 669 on irrigated continuous corn yields. *Agron. J.* 98: 63-71.
 670 doi:10.2134/agronj2005.0174.

671 Hong, N., P.C. Scharf, J.G. Davis, N.R. Kitchen and K.A. Sudduth. 2007. Economically optimal
 672 nitrogen rate reduces soil residual nitrate. *J. Environ. Qual.* 36: 354-362.
 673 doi:10.2134/jeq2006.0173.

674 Horowitz, J.K. and E. Lichtenberg. 1993. Insurance, moral hazard, and chemical use in
 675 agriculture. *Am. J. Agric. Econ.* 75: 926-935.

676 Huang, W.-y. and M. LeBlanc. 1994. Market-based incentives for addressing non-point
 677 water quality problems: a residual nitrogen tax approach. *Rev. Agr. Econ.* 16: 427-
 678 440.

679 IFA, 2007. Fertilizer Best Management Practices: General Principles, Strategy for their
 680 Adoption and Voluntary Initiatives vs. Regulations. IFA International Workshop on
 681 Fertilizer Best Management Practices.

682 Isik, M. and M. Khanna. 2003. Stochastic technology, risk preferences, and adoption of site-
 683 specific technologies. *Am. J. Agric. Econ.* 85: 305-317.

684 Kanter, D.R., X. Zhang and D.L. Mauzerall. 2013. Reducing nitrogen pollution while
 685 decreasing farmers' costs and increasing fertilizer industry profits. *J. Environ. Qual.*
 686 In press.

687 Knapp, K.C. and K.A. Schwabe. 2008. Spatial dynamics of water and nitrogen management
 688 in irrigated agriculture. *Am. J. Agric. Econ.* 90: 524-539.

689 Janssen, B.H., F.C.T. Guiking, D. Vandereijk, E.M.A. Smaling, J. Wolf and H. Vanreuler. 1990. A
 690 System for Quantitative-Evaluation of the Fertility of Tropical Soils (Quefts).
 691 *Geoderma* 46: 299-318. doi:10.1016/0016-7061(90)90021-Z.

692 Jaynes, D.B. 2011. Confidence bands for measured economically optimal nitrogen rates.
 693 *Precis. Agric.* 12: 196-213. doi:10.1007/S11119-010-9168-3.

694 Johnson, J.M.F., A.J. Franzluebbers, S.L. Weyers and D.C. Reicosky. 2007. Agricultural
 695 opportunities to mitigate greenhouse gas emissions. *Environ. Pollut.* 150: 107-124.

696 Larson, D.M., G.E. Helfand and B.W. House. 1996. Second-best tax policies to reduce
 697 nonpoint source pollution. *Am. J. Agric. Econ.* 78: 1108-1117.

698 Mérel, P., F. Yi, J. Lee and J. Six. 2014. A regional bio-economic model of nitrogen use in
 699 cropping. *Am. J. Agric. Econ.* 96: 67-91.

700 Nelson, K. and P. Motavalli. 2008. Cost-effective N management using reduced rates of
 701 polymer coated urea in corn. Agronomy Department College of Agriculture, Food
 702 and Natural Resources University of Missouri: 41.

703 Prokopy, L.S., K. Floress, D. Klotthor-Weinkauf and A. Baumgart-Getz. 2008. Determinants
 704 of agricultural best management practice adoption: Evidence from the literature. *J.*
 705 *Soil Water Conserv.* 63: 300-311. doi:10.2489/63.5.300.

706 Ravishankara, A.R., J.S. Daniel and R.W. Portmann. 2009. Nitrous Oxide (N₂O): The
 707 Dominant Ozone-Depleting Substance Emitted in the 21st Century. *Science* 326:
 708 123-125. doi:10.1126/Science.1176985.

709 Reay, D.S., E.A. Davidson, K.A. Smith, P. Smith, J.M. Melillo, F. Dentener, et al. 2012. Global
 710 agriculture and nitrous oxide emissions. *Nat. Clim. Chang.* 2: 410-416.
 711 doi:10.1038/nclimate1458.

712 Sawyer, J.E., E.D. Nafziger, G.W. Randall, L.G. Bundy, G.W. Rehm and B.C. Joern. 2006.
 713 Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn. Iowa State
 714 University Extension, Ames, IA.

715 Setiyono, T.D., H. Yang, D.T. Walters, A. Dobermann, R.B. Ferguson, D.F. Roberts, et al. 2011.
 716 Maize-N: A Decision Tool for Nitrogen Management in Maize. *Agron. J.* 103: 1276-
 717 1283. doi:10.2134/Agronj2011.0053.

718 Sylvester-Bradley, R. and D.R. Kindred. 2009. Analysing nitrogen responses of cereals to
 719 prioritize routes to the improvement of nitrogen use efficiency. *J. Exp. Bot.* 60: 1939-
 720 1951. doi:10.1093/jxb/erp116.

721 Tilman, D., C. Balzer, J. Hill and B.L. Befort. 2011. Global food demand and the sustainable
722 intensification of agriculture. *Proceedings of the National Academy of Sciences of
723 the United States of America* 108: 20260-20264. doi:10.1073/pnas.1116437108.

724 UNEP, 2013. Drawing Down N₂O to Protect Climate and the Ozone Layer. A UNEP Synthesis
725 Report. . United Nations Environment Programme (UNEP), Nairobi, Kenya.

726 U.S. Department of Agriculture (USDA), Economic Research Service, 2013.
727 <http://www.ers.usda.gov/>

728 Yadav, S.N., W. Peterson and K.W. Easter. 1997. Do farmers overuse nitrogen fertilizer to
729 the detriment of the environment? *Environ. Resour. Econ.* 9: 323-340.

730 Yang, H.S., A. Dobermann, J.L. Lindquist, D.T. Walters, T.J. Arkebauer and K.G. Cassman.
731 2004. Hybrid-maize - a maize simulation model that combines two crop modeling
732 approaches. *Field Crop Res.* 87: 131-154. doi:10.1016/J.Fcr.2003.10.003.

733 Zhang, W.F., Z.X. Dou, P. He, X.T. Ju, D. Powlson, D. Chadwick, et al. 2013. New technologies
734 reduce greenhouse gas emissions from nitrogenous fertilizer in China. *Proc. Natl.
735 Acad. Sci. U.S.A.* 110: 8375-8380. doi:10.1073/Pnas.1210447110.

736

737 **Figure captions**

738 **Figure 1. Flow chart of the NUE³ framework.** Blue boxes are the three major framework
739 modules. Red boxes indicate the major inputs.

740

741 **Figure 2. Relative changes of yield response to fertilizer application after**
742 **implementing TMPs.** The black solid line denotes the baseline scenario. The dotted line,
743 dash-dotted line, and the dashed line are the yield responses when TMP1 (e.g. side
744 dressing), TMP2 (e.g. ESN), and TMP3 (e.g. improved hybrid) are used. The (0,0) and (1,1)
745 points correspond to (X_o, Y_o) and (X_{max}, Y_{max}) in the yield response function before
746 implementation of TMPs.

747

748 **Figure 3. Response of (a) farmer's net profits to fertilizer price changes and resulting**
749 **(b) recovery efficiency and (c) excess nitrogen.** The circles denote optimized nitrogen
750 application rates that maximize the farmer's profit under specific fertilizer and crop prices.
751 The numbers beside the circles indicate the fertilizer price scenario: 1 is the baseline
752 scenario for Midwest U.S. in 2011 when fertilizer price is \$ 0.91 kg N⁻¹, and the fertilizer-to-
753 crop price ratio (R) is 4.14. 2,4, and 10 indicate multiples of fertilizer price. The triangles
754 indicate the nitrogen application rate when yields reach the yield ceiling.

755

756 **Figure 4. Optimized nitrogen application rates and profit for different technologies,**
757 **under various fertilizer price scenarios.** The black solid line denotes the optimized N
758 rate and profit for a farm before implementing TMPs. The red dotted line, blue dash-dotted

759 line, and the magenta dashed line are the optimized N rate and profit for a farm
760 implementing TMP1 (side dressing), TMP2 (ESN), and TMP3 (improved hybrid). The
761 numbers in the graphs denote the relative change from the baseline fertilizer price (\$0.91
762 kg N⁻¹). For example, number 2 means the fertilizer (or fertilizer and technology) price
763 increases to twice the baseline fertilizer price.

764

765 **Figure 5. Optimized profit and resulting excess nitrogen and environment costs for**
766 **different TMPs, under various fertilizer price scenarios.** The green dashed line denotes
767 where farmer profits is same as the environmental cost (calculated according to the
768 averaged damage cost in Table 1).

769

770 **Figure 6. Optimized profit and resulting NUE for different TMPs, under various**
771 **fertilizer-to-crop price ratios.** The (a) NUE_r is apparent nitrogen recovery efficiency, and
772 the (b) NUE_p is partial factor productivity of applied N.

773

774 **Figure 7. The impact of the TMP price on farmer profits, nitrogen fertilizer saving,**
775 **NUE, excess nitrogen, and planting area.** The value on the y-axis is the ratio of an
776 economic or environmental parameter changed after implementing (a) TMP1, (b) TMP2,
777 and (c) TMP3. For example, the “changed ratio” for potential profit is the difference
778 between the optimal profit before and after implementing TMPs divided by the profit
779 before implementing TMPs ($\frac{\pi_i^* - \pi^*}{\pi^*}$). A positive value in the graphs suggests a positive
780 impact on farmer profits or the environment. The red, blue, and magenta boxes
781 demonstrate the price range for TMP 1,2,3 respectively in order to ensure positive impact

782 on farmer's profit and all environmental parameters.

783 **Table captions**

784

785

786 **Table 1. Emission factors and damage costs of four forms of reactive nitrogen.**

787

788 **Table 2. Summary of the input data to the framework for the case study.**

789

790 **Table 3 Technologies and Management Practices (TMPs) yield response scenarios.**

791

792 **Table 4. The price range to ensure positive economic and environmental outcomes**

793 **for implementing three TMP cases for corn producing in Midwest US.** We assume that

794 the improvement of yield response reported in those TMP cases could be applied to all

795 yield response functions examined in sensitivity test.

796

797 **Table 5. Impacts of TMP implementation on economic and environmental**

798 **parameters for most corn producing farms in Midwest U.S.** These conditions are also

799 applicable to any other case where $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$.

800

801 **Table 6. Summary of TMP conditions that ensure a positive impact on each**

802 **environmental or economic parameter for most corn producing farms in Midwest**

803 **U.S.** These conditions are also applicable to any other cases where $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$.

Tables

Table 1. Emission factors and damage costs of four forms of reactive nitrogen.

Reactive Nitrogen (Nr) species	IPCC emission factor (EF_j) (De Klein et al., 2006)	Fraction of N_{exc} emitted as Nr ($Frac_j$)	Damage cost estimation (DC_j , 2005 USD kg N $^{-1}$) \ddagger
N_2O	0.013 \ddagger	0.03	8.2 (2.3-30.3)
NO_3^-	0.3	0.73	39.4 (8.4-57.2)
NO_x	0.05	0.12	24.6 (15.7-67.4)
NH_3	0.05	0.12	13.7 (1.1-50.6)

\ddagger This includes both direct and indirect emissions from nitrogen application to cropland.

\ddagger We averaged the estimation of the damage cost from Compton et al., 2011, Brink et al., 2011, Gu et al., 2012 . The values in parentheses are the largest and smallest values of all studies above (Kanter et al., in press).

Table 2. Case study: Input data summary

Parameter	Value	Data source
Pr_{crop}	\$ 0.22 kg ⁻¹	Corn price for U.S. heartland† in 2011 (USDA ERS, 2013)
Pr_{fert}	\$ 0.91 kg N ⁻¹	Anhydrous ammonia price for U.S. in 2011 (USDA ERS, 2013)
$Cost_{other}$	\$ 1189 ha ⁻¹	Total cost minus fertilizer cost for corn farm in U.S. heartland in 2011 (USDA ERS, 2013)
Y_0	6931 kg ha ⁻¹	(Below et al., 2007)
X_{max}	146 kg N ha ⁻¹	(Below et al., 2007)
Y_{max}	10707 kg ha ⁻¹	(Below et al., 2007)

†Heartland is the 12 states in the U.S. including Wisconsin, Indiana, Illinois, Minnesota, Michigan, Kansas, Iowa, North Dakota, Nebraska, Ohio, South Dakota, and Missouri. See the supplementary information for a sensitivity analysis of these parameterizations and the range of values reported in the literature.

Table 3 Technologies and Management Practices (TMPs) yield response scenarios.

	Yield response Scenario	Examples of available technology	Yield curve parameterization†	Case Study§
TMP1	Standard yield ceiling with lower N application rate	Precision farming (Dobermann et al., 2004; Gehl et al., 2005); Improved hybrid (Below et al., 2007; Sylvester-Bradley and Kindred, 2009; Haegeler and Below, 2013);	$Y_{max,1} = Y_{max}$ $X_{max,1} < X_{max}$	$Y'_1 = \begin{cases} 0 + 3.33X' - 2.78X'^2 & (X' \leq 0.60) \\ 1 & (X' > 0.60) \end{cases}$ Side dressing (Gehl et al., 2005)
TMP2	Higher yield ceiling with standard or lower N application rate	Controlled release fertilizer (Blaylock, 2013); Precision farming (Cassman et al., 2003; Godwin et al., 2003); Improved hybrid (Below et al., 2007); Soil management (Halvorson et al., 2006)	$Y_{max,2} > Y_{max}$ $X_{max,2} \leq X_{max}$	$Y'_2 = \begin{cases} 0 + 2.48X' - 1.32X'^2 & (X' \leq 0.93) \\ 1.15 & (X' > 0.93) \end{cases}$ Controlled release fertilizer (Blaylock, 2013)
TMP3	Higher yields at higher N application rates	Improved hybrid (Below et al., 2007; Ciampitti and Vyn, 2012; Haegeler and Below, 2013)	$Y_{max,3} > Y_{max}$ $X_{max,3} > X_{max}$	$Y'_3 = \begin{cases} 0.13 + 2.27X' - 0.94X'^2 & (X' \leq 1.20) \\ 1.50 & (X' > 1.20) \end{cases}$ Improved hybrid (Ciampitti and Vyn, 2012)

†Assume the yield ceiling and the corresponding nitrogen application rate for each technology are $Y_{max,i}$ and $X_{max,i}$.

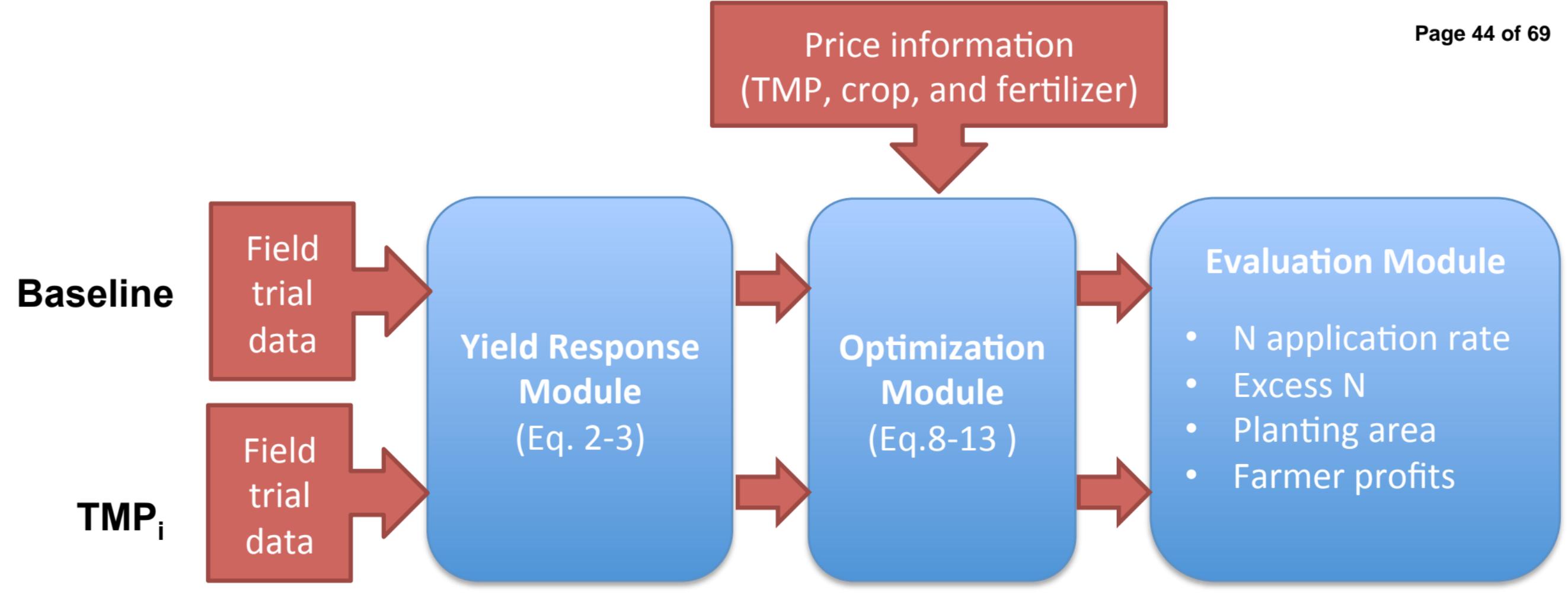
§ The yield response function in this column is normalized by the minimum yield level (Y_0), maximum yield level (Y_{max}), and the corresponding nitrogen application rate (X_{max}) before implementing a TMP. Y_i' and X_i' are defined as $Y_i' = \frac{Y_i - Y_0}{Y_{max} - Y_0}$, $X_i' = \frac{X_i}{X_{max}}$. Please refer to the supplementary information for a detailed definition of each parameter.

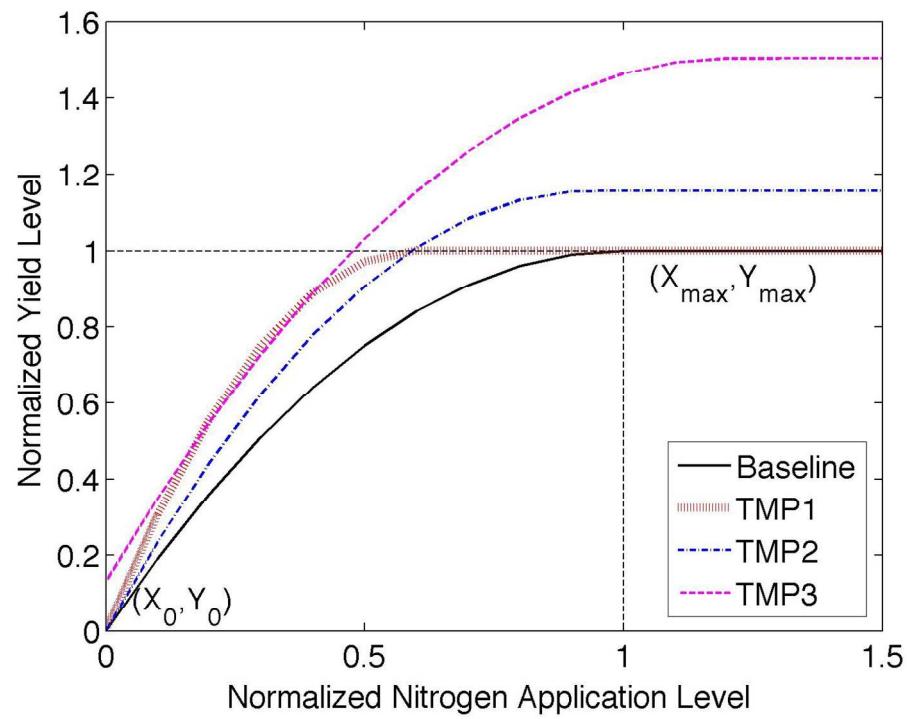
Table 4. Case study: Price ranges that guarantee positive economic and environmental outcomes for implementation of three TMPs for Midwestern US corn.

TMP case	TMPs priced as \$ ha ⁻¹	TMPs priced as \$ kg N ⁻¹
Side dressing (Gehl et al., 2005)	\$0-50 ha ⁻¹	\$0-0.61 kg N ⁻¹
ESN (Blaylock, 2013)	\$0-138 ha ⁻¹	\$0-0.86 kg N ⁻¹
Improved cultivar (Ciampitti and Vyn, 2012)	NA	\$0.89-1.96 kg N ⁻¹ †

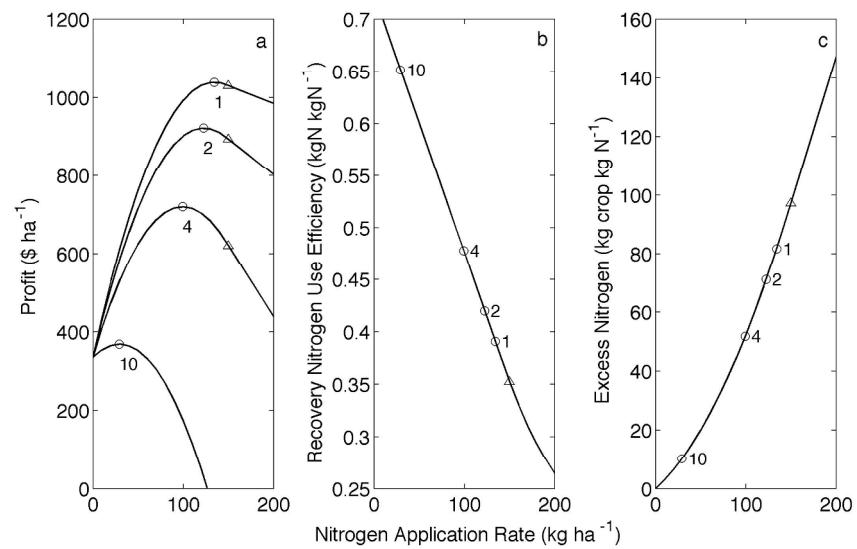
† No pricing scheme exists for improved hybrids that increase farmer profits and reduce nitrogen application rates at the same time. The price range here only achieves the environmental objective of reducing excess N.

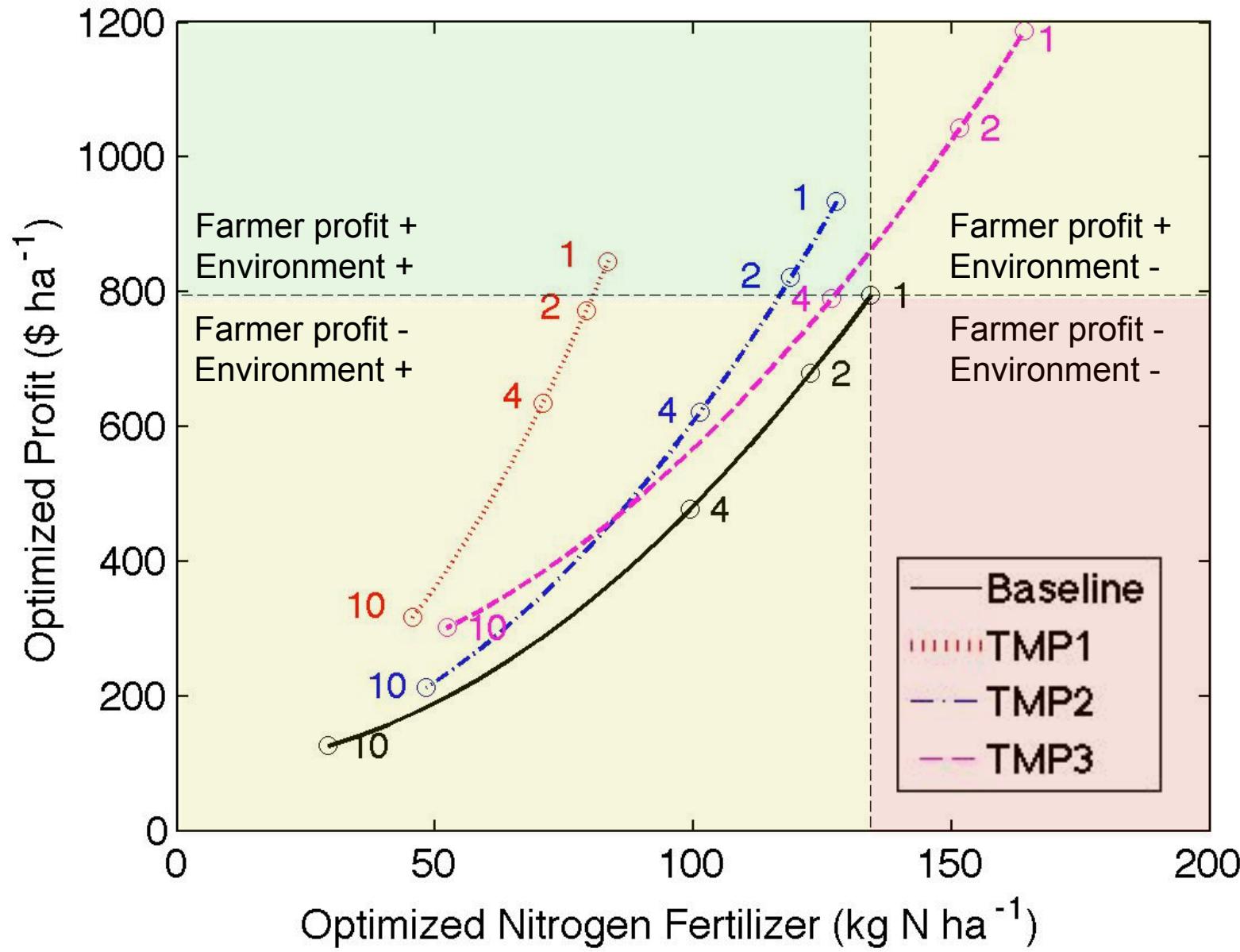
Table 5. Impacts of TMP implementation on economic and environmental parameters for Midwestern US corn producing farms. These conditions are also applicable to any other cases where $\frac{\sqrt{(Y_{max,i} - Y_0)Y_{max}}}{5X_{max}} > R$.

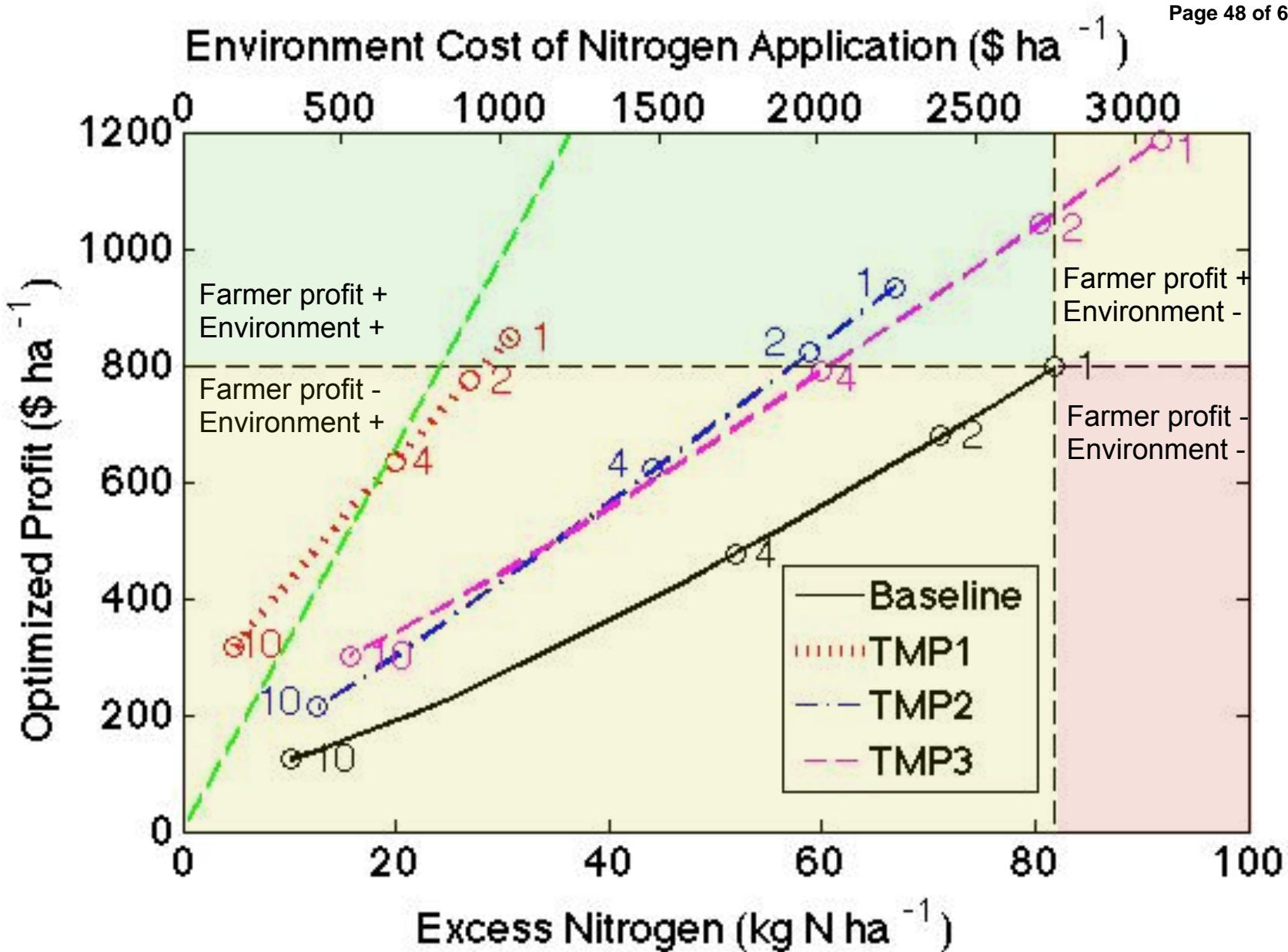

	TMPs priced as \$ ha ⁻¹	TMPs priced as \$ kg N ⁻¹
Farmer's Profit ($d\pi^*$)	$Pr_{crop} \cdot (Y_{max,i} - Y_{max}) - Pr_{fert} \cdot (X_{max,i} - X_{max}) - Pr_{TMP,i}$	$Pr_{crop} \cdot (Y_{max,i} - Y_{max}) - Pr_{fert} \cdot (X_{max,i} - X_{max}) - Pr_{TMP,i} \cdot X_{max,i}$
Nitrogen application rate (dX^*)	$(X_{max,i} - X_{max}) - \frac{R}{2} \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right)$	$(X_{max,i} - X_{max}) - \frac{Pr_{fert}}{2Pr_{crop}} \cdot \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) - \frac{\left(\frac{Pr_{TMP,i}}{Pr_{crop}} \right) X_{max,i}^2}{2(Y_{max,i} - Y_{0,i})}$ or $(X_{max,i} - X_{max}) - \frac{1}{Pr_{crop}} \cdot \left[\frac{Pr_{fert}}{2} \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) + \frac{Pr_{TMP,i} X_{max,i}^2}{2(Y_{max,i} - Y_{0,i})} \right]$
Excess nitrogen (dN_{exc}^*)	$(X_{max,i} - X_{max}) - \frac{R}{2} \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) - NC[(Y_{max,i} - Y_{0,i}) - (Y_{max} - Y_0)]$	$(X_{max,i} - X_{max}) - \frac{Pr_{fert}}{2Pr_{crop}} \cdot \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) - \frac{\left(\frac{Pr_{TMP,i}}{Pr_{crop}} \right) X_{max,i}^2}{2(Y_{max,i} - Y_{0,i})} - NC[(Y_{max,i} - Y_{0,i}) - (Y_{max} - Y_0)]$
Planting area (dPA^*)	$P/Y_{max,i} - P/Y_{max}$	$P/Y_{max,i} - P/Y_{max}$

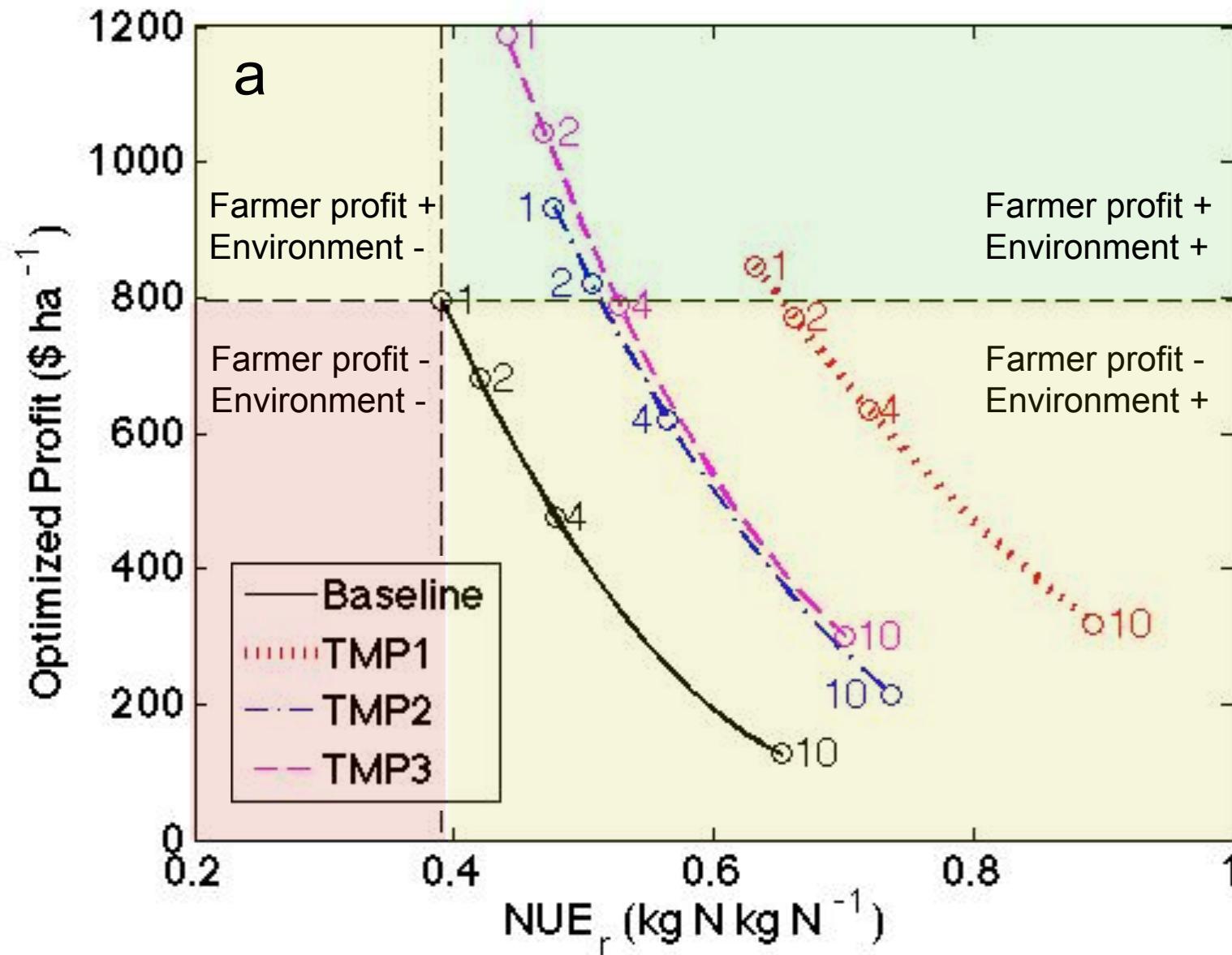

Table 6. TMP conditions that ensure a positive effect on environmental or economic parameters for corn producing

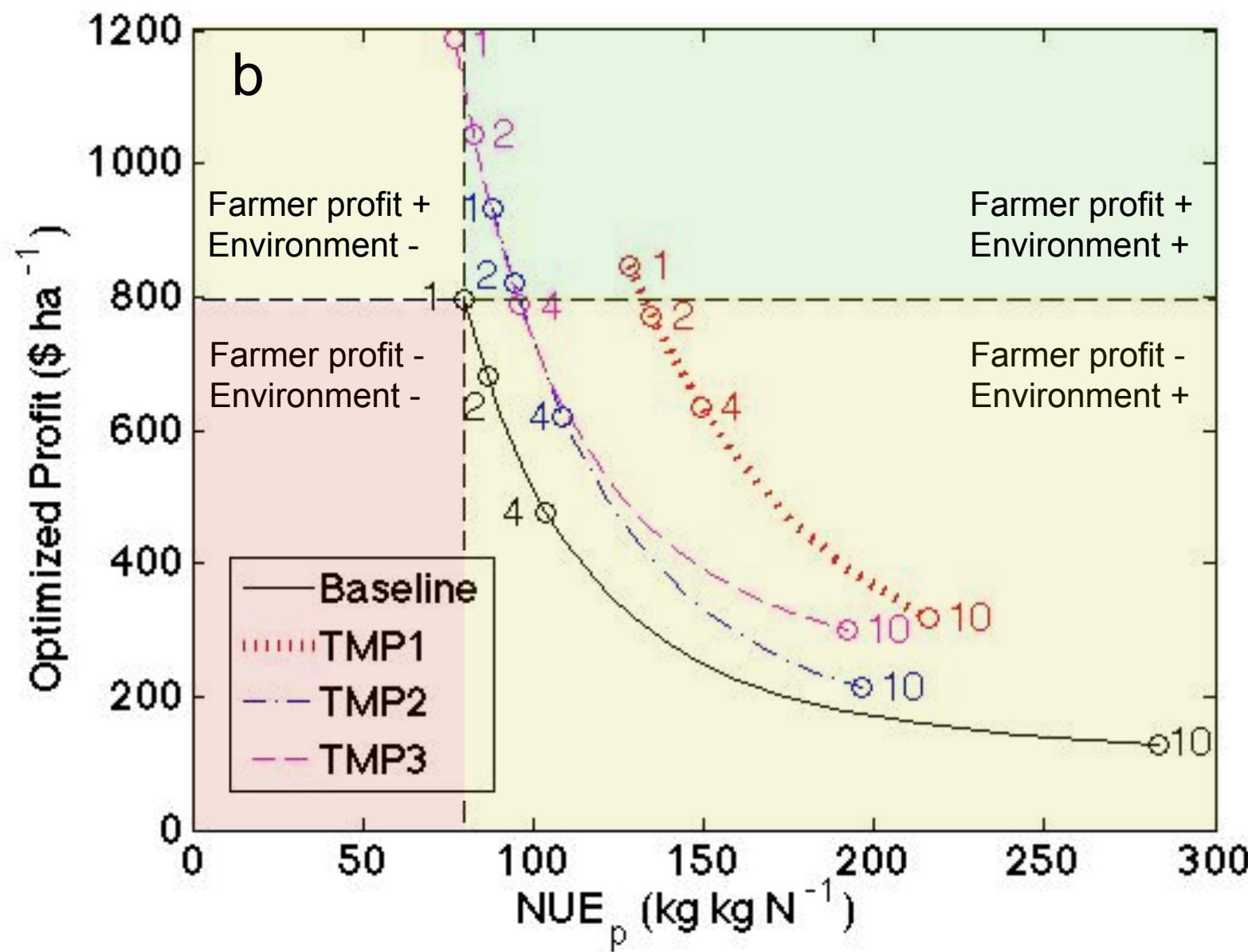
farms in the Midwestern U.S. These conditions are also applicable to any other cases where $\frac{\sqrt{(Y_{max} - Y_0)Y_{max}}}{5X_{max}} > R$.

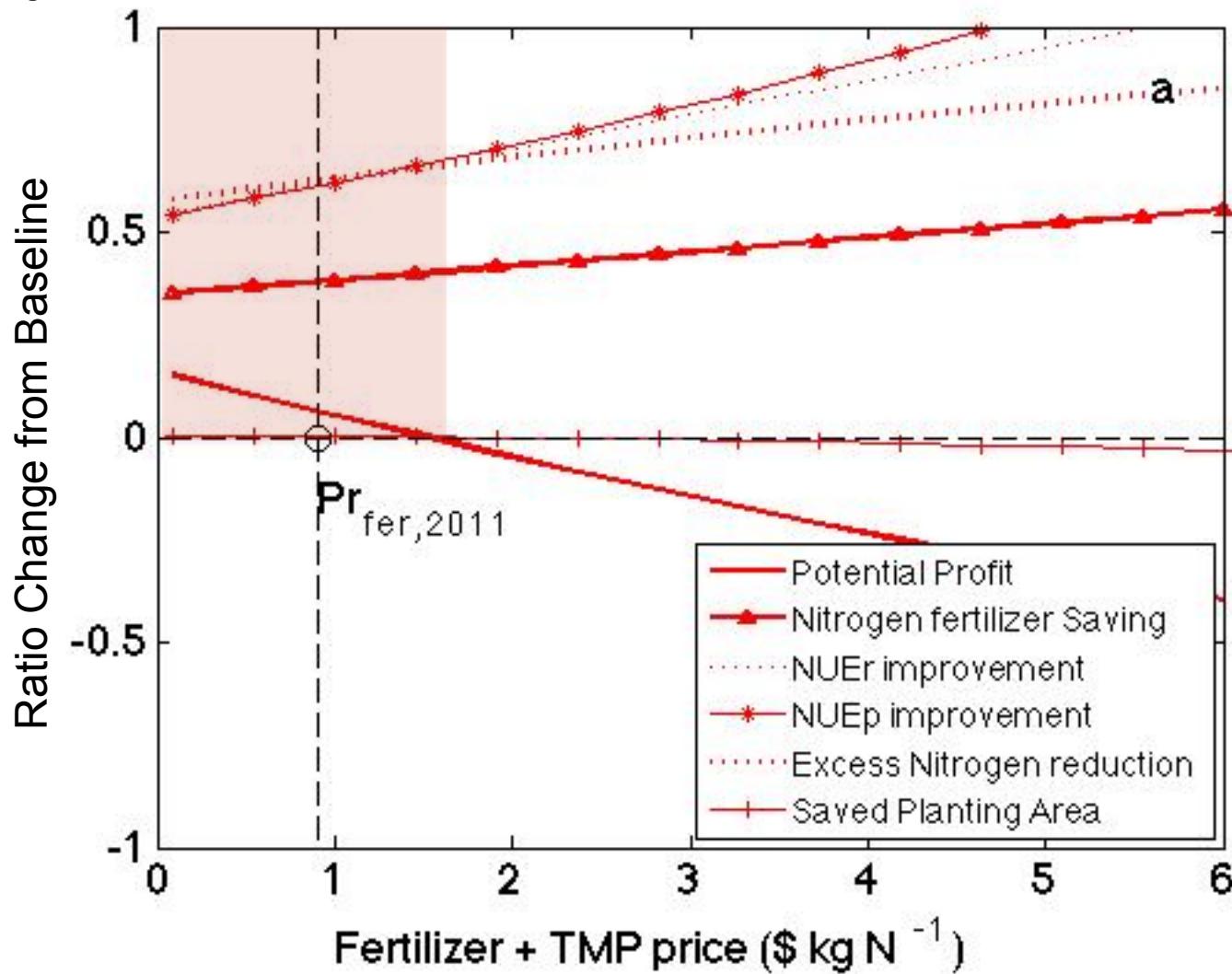

	TMPs priced as \$ ha ⁻¹ (e.g. side dressing)	TMPs priced as \$ kg N ⁻¹ (e.g. ESN)
Farmer's Profit	$Pr_{TMP,i} \leq Pr_{crop} \cdot (Y_{max,i} - Y_{max}) - Pr_{fert} \cdot (X_{max,i} - X_{max})$	$Pr_{TMP,i} \leq \frac{1}{X_{max,i}} [Pr_{crop} \cdot (Y_{max,i} - Y_{max}) - Pr_{fert} \cdot (X_{max,i} - X_{max})]$
Nitrogen fertilization rate	$(X_{max,i} - X_{max}) - \frac{R}{2} \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) \leq 0$	$Pr_{TMP,i} \geq Pr_{crop} \frac{2(Y_{max,i} - Y_{0,i})}{X_{max,i}^2} \left[\frac{R \cdot X_{max}^2}{2(Y_{max} - Y_0)} + (X_{max,i} - X_{max}) \right] - Pr_{fert}$
Excess nitrogen	$(X_{max,i} - X_{max}) - \frac{R}{2} \left(\frac{X_{max,i}^2}{Y_{max,i} - Y_{0,i}} - \frac{X_{max}^2}{Y_{max} - Y_0} \right) - NC[(Y_{max,i} - Y_{0,i}) - (Y_{max} - Y_0)] \leq 0$	$Pr_{TMP,i} \geq Pr_{crop} \frac{2(Y_{max,i} - Y_{0,i})}{X_{max,i}^2} \left[\frac{R \cdot X_{max}^2}{2(Y_{max} - Y_0)} + (X_{max,i} - X_{max}) - NC[(Y_{max,i} - Y_{0,i}) - (Y_{max} - Y_0)] \right] - Pr_{fert}$
Planting area	$Y_{max,i} - Y_{max} \geq 0$	$Y_{max,i} - Y_{max} \geq 0$

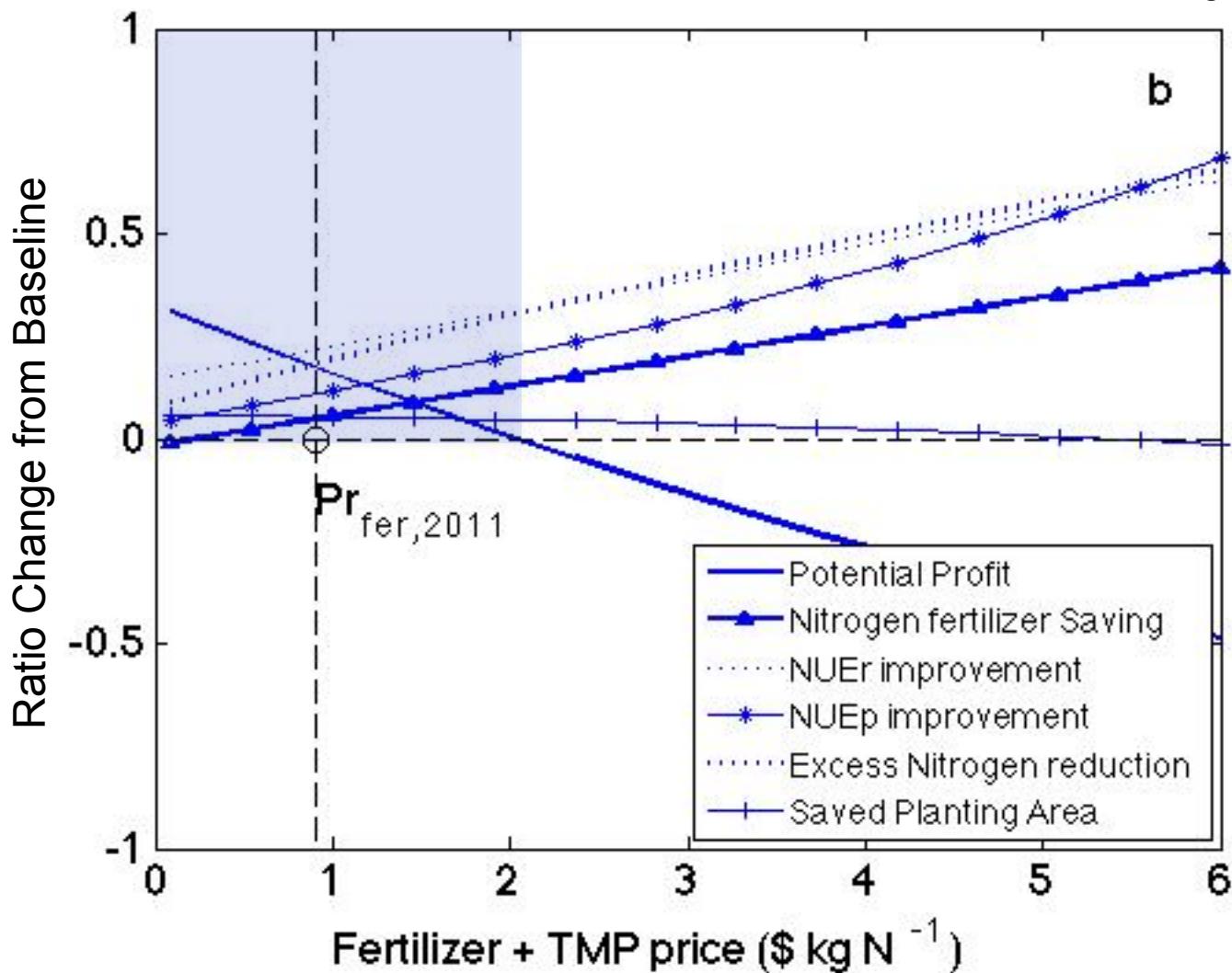


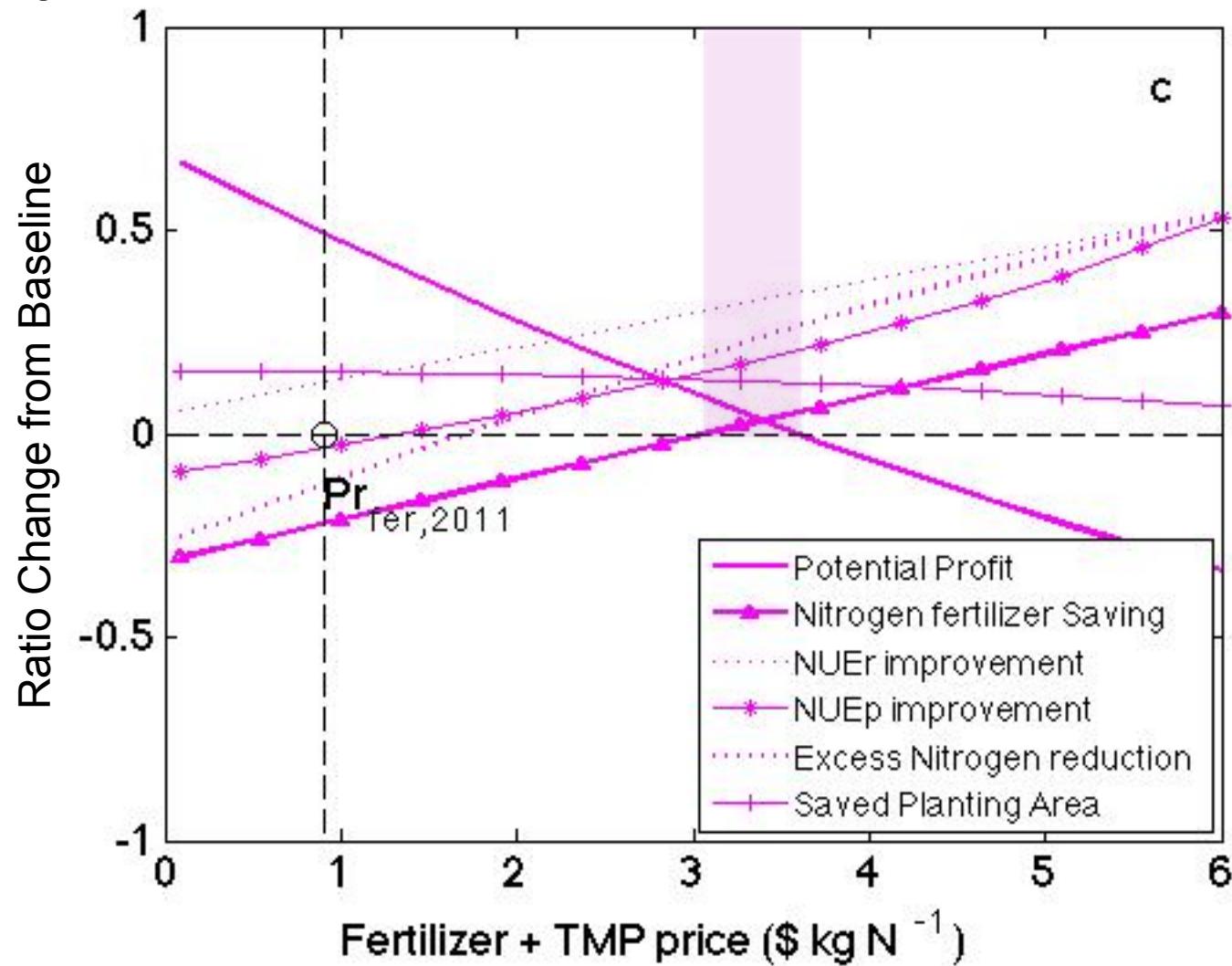



564x423mm (72 x 72 DPI)




896x517mm (72 x 72 DPI)





The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture

Xin Zhang†, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ

Denise Mauzerall, Woodrow Wilson School of Public and International Affairs and the Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ

Eric Davidson, Woods Hole Research Center, Falmouth, MA

David Kanter, Earth Institute, Columbia University, New York, NY

Ruohong Cai, Environmental Defense Fund, New York, NY

Key words:

nitrogen use efficiency, nitrogen fertilization rate, farmer profits, nitrogen pollution, bio-economic model

†Corresponding author:

Xin Zhang

Email address: xz2@princeton.edu

Phone: +1203-859-1211

Supplementary Materials

S1. Glossary

a, b, and c: Parameters of a yield response function

A_i, B_i, and C_i: Parameters of a yield response function, normalized

e: The percentage improvement of yield plateau due to implementation of TMP_i (defined in $Y_{max,i} - Y_{max} = e \cdot Y_{max}$)

f: The percentage improvement of nitrogen fertilization rate at yield plateau due to implementation of TMP_i (defined in $X_{max,i} - X_{max} = -f \cdot X_{max}$)

j: Four reactive nitrogen forms, including N₂O, NO₃⁻, NO_x, and NH₃

Cost_{other}: All the operating costs except nitrogen fertilizer (\$ ha⁻¹)

DC_j: Damage cost of the reactive nitrogen *j* (\$ kg⁻¹)

dπ^{}*: Difference between farmer profit before and after implementing a TMP (\$ ha⁻¹)

dX^{}*: Difference between optimized fertilization rate before and after implementing a TMP (kg N ha⁻¹)

dN_{exc}^{}*: Difference between excess N before and after implementing a TMP (kg N ha⁻¹)

dPA^{}*: Difference between cropland demand before and after implementing a TMP (ha)

EF_j: IPCC emission factors for reactive nitrogen *j*

$Frac_j$: Fraction of N_{exc} released to the environment in reactive nitrogen form j

N_{exc} : Excess nitrogen (kg N ha^{-1})

N_{exc}^* : Excess nitrogen at the optimized N fertilization rate (kg N ha^{-1})

$N_{exc,i}^*$: Excess nitrogen at the optimized N fertilization rate after implementing TMP_i (kg N ha^{-1})

NC : Nitrogen content of the crop ($\text{kg N per kg crop product}$)

NUE_p : Partial factor productivity of applied N ($\text{kg grain yield kg}^{-1} \text{ N applied}$)

NUE_p^* : Partial factor productivity of applied N when the N fertilization rate is optimized to maximize farmer profits ($\text{kg grain yield kg}^{-1} \text{ N applied}$)

NUE_r : Apparent nitrogen recovery efficiency ($\text{kg N kg}^{-1} \text{ N applied}$)

NUE_r^* : Apparent nitrogen recovery efficiency when the N fertilization rate is optimized to maximize farmer profits ($\text{kg N kg}^{-1} \text{ N applied}$)

P : Crop production demand (kg)

PA : Planting area (ha)

PA^* : Planting area at the optimized N fertilization rate (kg ha^{-1})

PA_i^* : Planting area at the optimized N fertilization rate after implementing TMP_i (kg ha^{-1})

Pr_{crop} : Crop price ($\$ \text{ kg}^{-1}$)

Pr_{fert} : Fertilizer price ($\$ \text{ kg N}^{-1}$)

R : Fertilizer to crop price ratio

X : Nitrogen application rate (kg N ha^{-1})

X_0 : N fertilization rate equals 0 (kg N ha^{-1})

X_i' : Normalized N fertilization rate of TMP_i using the yield response without TMP implementation ($X_i' = \frac{X_i}{X_{max}}$)

X_{max} : N fertilization rate at the yield plateau (kg N ha^{-1})

X^* : Optimized N fertilization rate to maximize farmer profits (kg N ha^{-1})

X_i^* : Optimized N fertilization rate to maximize farmer profits when implementing TMP_i (kg N ha^{-1})

Y : Yield (kg ha^{-1})

Y_0 : Yield level without N fertilization (kg ha^{-1})

Y_i' : Normalized yield level of TMP_i using the yield response without TMP implementation ($Y_i' = \frac{Y_i - Y_0}{Y_{max} - Y_0}$)

Y_{max} : Yield level at the yield plateau (kg ha^{-1})

Y^* : Yield level when the N fertilization rate is optimized to maximize farmer profits (kg ha^{-1})

π : Farmer profits ($\text{\$ ha}^{-1}$)

π^* : Maximum farmer profits ($\text{\$ ha}^{-1}$)

π_i^* : Maximum farmer profits after implementing TMP_i ($\text{\$ ha}^{-1}$)

TMP : Technologies and Management Practices

ESN : Environmentally Smart Nitrogen, a controlled-release fertilizer product.

S2. Yield response functions for corn production in the U.S.

The yield response to nitrogen application varies largely due to soil and climate conditions, management practices, and crop types. The difference in the yield response affects farmers' balance sheets and their decisions on nitrogen management practices. Therefore, we surveyed a range of yield response functions reported in the literature for corn production in the U.S. (Table S1; Figure S1). The yield level without nitrogen fertilizer application ranges from 2 to 7 ton ha^{-1} , while the yield plateau ranges from 8 to 14 ton ha^{-1} . Most, but not all, show the plateau being approached near 150 kg N ha^{-1} . It is difficult to identify any one curve as "typical" for the U.S. The curves reported by Below et al. (2007, 2009) are intermediate with respect to yield plateau, whereas the curves by Cerrati and Blackmer (1990), Haegele and Below (2013), and Sawyer et al. (2006), are intermediate with respect to yield without N addition. For the study presented in the main text, we have chosen to use the curve by Below et al. (2007), and the sensitivity of the conclusions to that choice is presented here in this supplemental analysis.

S3. Sensitivity test for using different yield response functions as baseline

We used each yield response function in Table S1 as the baseline to evaluate how sensitive economic and environmental outcomes are to the baseline yield response.

Economic and environmental impact of TMPs priced as \$ ha^{-1}

When TMPs are priced as \$ ha⁻¹, the optimized N application rate is not affected by TMP price. After implementing TMPs, the nitrogen fertilization rate is reduced by 38% (37%, 39%), 5% (4%, 5%) for side dressing and ESN respectively, but is increased by 22% (22%, 23%) for improved hybrid (the ratio where the dashed line crosses the vertical dotted line in Figure S2). Values reported here is the median value of all tests using yield response functions in Table S1 with the upper and lower boundaries in parentheses.

Similarly, the implementation of side dressing and ESN reduces excess N by 63% (52%, 90%) and 18% (13%, 33%), respectively, while improved hybrids increase excess N by 12% (1%, 16%) (Figure S3).

In contrast, implementing improved hybrids can increase the yield level, therefore 20% (15%, 27%) less land is required to meet to the same production demand (Figure S4). Side dressing has negligible impact on land sparing, while ESN may reduce cropland demand by 7% (5%, 11%) for the same total production.

Implementing TMPs increasing the potential profit by 10% (4%, 22%), 28% (17%, 56%), 80% (49%, 158%) respectively (the ratio where the solid line crosses the vertical dotted line in Figure S2). We consider “potential profit” as farmer’s profit before accounting for the TMP cost. Despite the large variations in the change in potential profit, side dressing provides the least increase in potential profits.

Economic and environmental impact of TMPs priced as \$ kg N⁻¹

When TMPs are priced as \$ kg N⁻¹, the optimized N application rate for each TMP decreases as TMP price increases, therefore, the economic and environmental outcomes of implementing TMP change with TMP price.

To enable a positive impact on farmer profits, TMP price for side dressing, ESN, and improved hybrid should be lower than \$0.61 kg N⁻¹ (\$0.61 kg N⁻¹, \$0.61 kg N⁻¹), \$1.14 kg N⁻¹ (\$0.86 kg N⁻¹, \$1.61 kg N⁻¹), and \$2.72 kg N⁻¹ (\$1.96 kg N⁻¹, \$3.97 kg N⁻¹) respectively (the TMP price where the solid line crosses the horizontal dotted line in Figure S2). Despite the large variations in baseline yield response functions, TMPs would not have negative impact on planting area, as long as TMPs have positive impact on farmers profit.

At any given TMP price, implementing side dressing and ESN will reduce fertilizer application and excess nitrogen lost. However, implementing improved hybrid can only reduce nitrogen fertilizer application when TMP price is higher than \$2.20 kg N⁻¹ (\$1.56 kg N⁻¹, \$3.26 kg N⁻¹), and can only reduce excess nitrogen when TMP price is higher than \$0.79 kg N⁻¹ (\$0.07 kg N⁻¹, \$0.89 kg N⁻¹).

To ensure a positive impact on farmer profits and all environmental parameters (including nitrogen fertilizer application rate, excess nitrogen, and planting area) for all corn production farms summarized in Figure S1, the TMP price for side dressing and ESN should be within the range \$0-\$0.61 kg N⁻¹, \$0-\$0.86 kg N⁻¹, respectively.

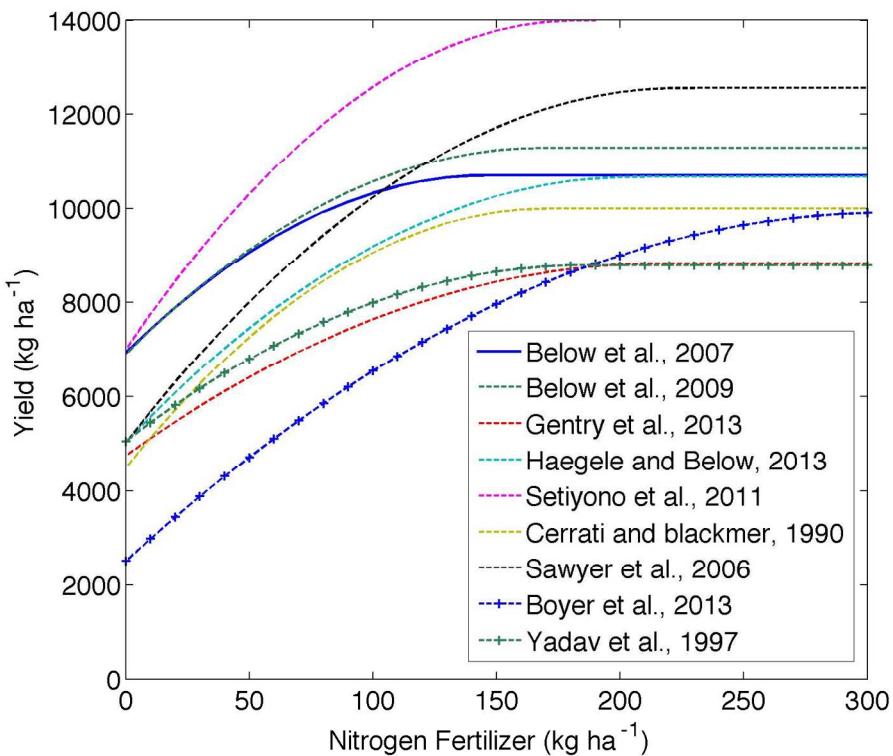
However, it is difficult to find a TMP price for improved hybrid to enable such win-win outcomes for all response curves examined in this sensitivity analysis (Figure S2 c). If only considering reduced excess nitrogen as the environmental target, the TMP price for improved hybrid should be within the range of \$0.89- \$1.96 kg N⁻¹ to ensure win-win outcomes for all farms (Figure S3 c).

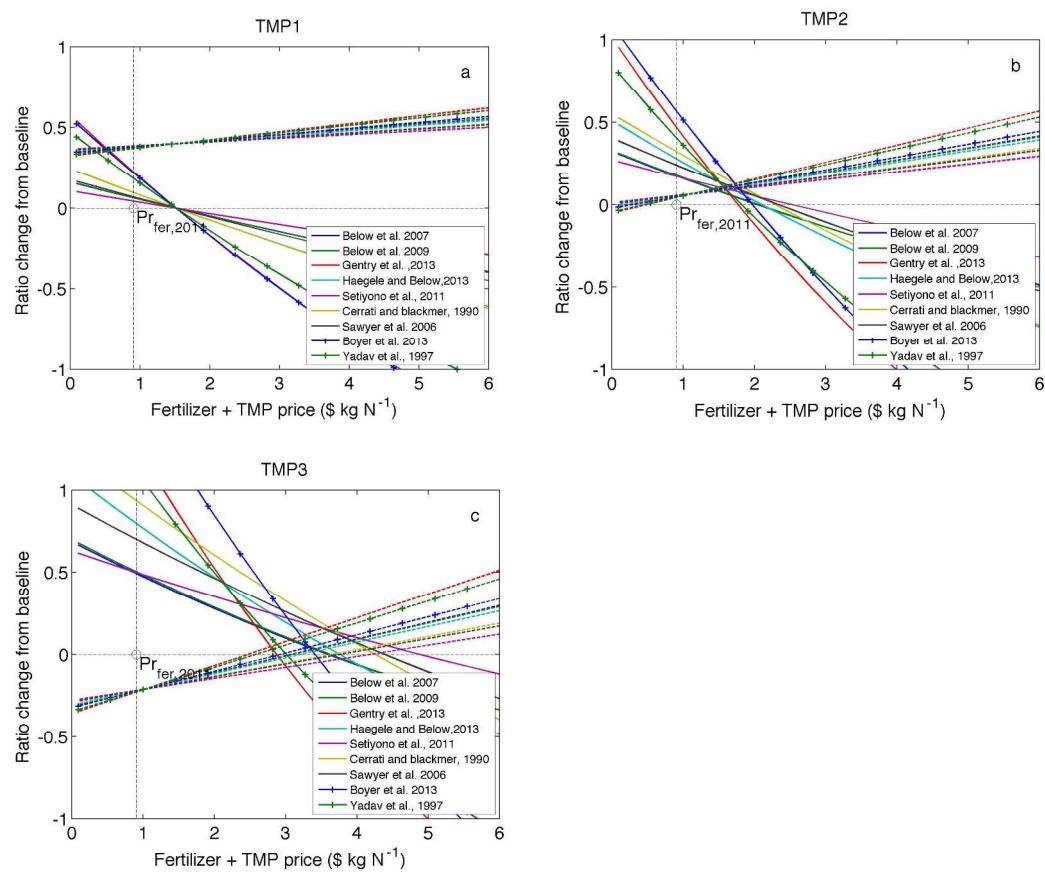
S4. A review on related agricultural economic studies

The nitrogen use in the cropping system has been intensively studied by agricultural economists. Many studies put nitrogen use in the framework of profit maximization and investigate the impact of fertilizer price or related monetary policies on fertilizer use. For example, Huang and LeBlanc (1994) found that a nitrogen tax induces farmers to use nitrogen more efficiently; Horowitz and Lichtenberg (1993) investigated how crop insurance affects corn farmers' input use in the U.S. Midwest. Some studies suggested that uncertainties in production and output price also affect farmer's decision on fertilizer use. Isik (2002) showed that, for a risk-averse farmer, production and output price uncertainties can change input use decisions. Isik and Khanna (2003) further developed a model of farmer decision making to determine the impacts of risk preferences and production uncertainties on adoption of site-specific technologies. Sheriff (2005) suggested production uncertainties may lead risk-averse farmers to over-apply nitrogen to the cropping systems, therefore some low-cost policies, such as nutrient management plans and variable rate technologies, may be feasible to increase profit for a farmer who over-apply nitrogen. However, quantifying the impact of production uncertainties on fertilizer use and evaluating

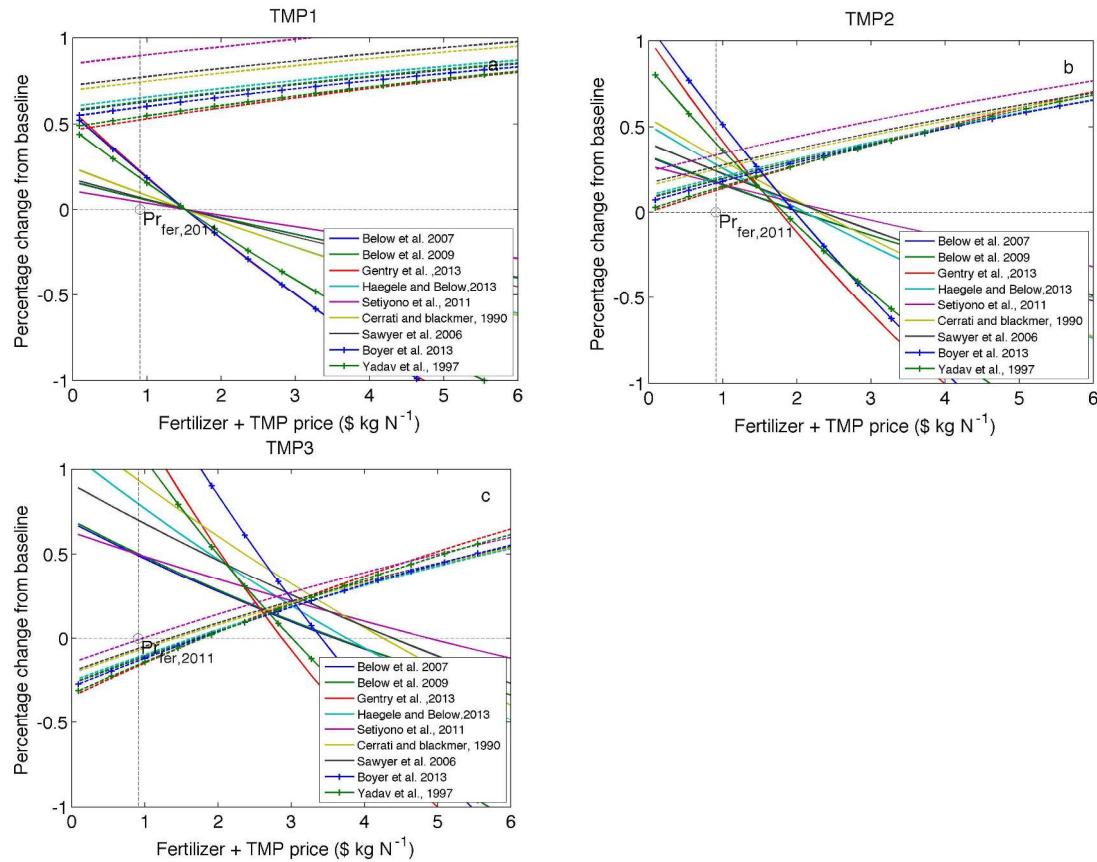
the feasibility of policies for reducing nitrogen pollution requires a better evaluation of uncertainties in production and output price.

In addition to farm income, researchers also examined the environmental impacts of nitrogen fertilizer use in cropland, and measures to reduce such externality. While excess nitrogen use may help improve farm income when production uncertainties are large, nitrite leach to the environment is likely to incur social costs. Mapp et al. (1994) compared the economic and environmental effects of broad versus targeted nitrogen use, and found that targeted nitrogen use is more effective in reducing nitrogen losses. Similarly, Babcock and Pautsch (1998) studied how variable fertilizer application rate can help increase environmental benefits by matching fertilizer rates with a soil's productivity. Using a dynamic optimization model, Watkins, Lu, and Huang (1998) studied the effects of optimal nitrogen application rate on the long-term profitability and environment, considering the nitrogen carry-over effects. Preckel et al. (2000) investigated how contract design affects nitrogen use, and discussed the implication of contract design in reducing environmental externalities. Yadav (1997) used a dynamic optimization model to simulate the optimal level of nitrogen rate that would maintain the nitrate contamination at certain level. Berntsen et al. (2003) used a farm model to study the environmental and economic consequences of implementing difference nitrogen taxes. They found that, to achieve efficiency, different farm type should implement different taxation scheme for reduction of nitrate leaching. Although the environmental cost from nitrogen may not be considered by all the farmers, leading to a possible negative


externality, other input use, such as pesticide could directly affect farmer health (Antle and Pingali, 1994).


Since nitrogen use in the cropping system has a major impact on water pollution, some researchers studied the water and nitrogen use jointly. Larson, Helfand and House (1996) found that a water surface is more efficient than a nitrogen input charge, although marginally less efficient than an emissions charge. Knapp and Schwabe (2008) demonstrated that Nitrate emission control can be “accomplished primarily through reduced applied water.

Bio-economic models, which integrate farmer's decision functions on resource management and production functions in one model, have been developed to examine the impact of policies and technologies on farmer profits and the environment (Janssen and van Ittersum, 2007; Mérel et al., 2014). Many models prescribe a fixed input intensity according to farm survey averages or a constant elasticity between input intensity and productivity (Babcock and Pautsch, 1998). Such parameterization limits the model's application in assessing policies and technologies that may affect farmer's input intensities or yield response. To address this limitation, increasing amount of studies implement non-linear production functions calibrated with field experiments or biological models (Isik and Khanna, 2003; Knapp and Schwabe, 2008; Mérel et al., 2014). For example, Mérel et al. (2014) calibrate the crop production function according to a biophysical soil process model (DAYCENT model, Del Grosso et al., 2008).


Table S1 A summary of references used in Figure S1

Reference	Reference Type	Data description
Below et al. (2007)	Conference paper	2005-2006, 37 on farm N response trials in 5 Midwestern states
Below (2009)	Conference paper	2005-2008, 78 on farm N response trials in 6 Midwestern states
Gentry et al. (2013)	Journal	2005-2010, Champaign, IL; continuous corn
Haegele and Below (2013)	Journal	2008-2009; Champaign, IL;
Setiyono et al. (2011)	Journal	The observed data are from the calibration data set from Clay Center, NE, in 2002
Cerrato and Blackmer (1990)	Journal	1985-1986, Iowa, 6 locations; 12 site-year of data, each having 10 rates of N applied
Sawyer et al. (2006)	Report	N calculator, central Illinois (estimated from website for continuous corn)
Boyer et al. (2013)	Journal	2006-2011 Tennessee; continuous corn
Yadav et al. (1997)	Journal	1987-1990, Minnesota; continuous corn

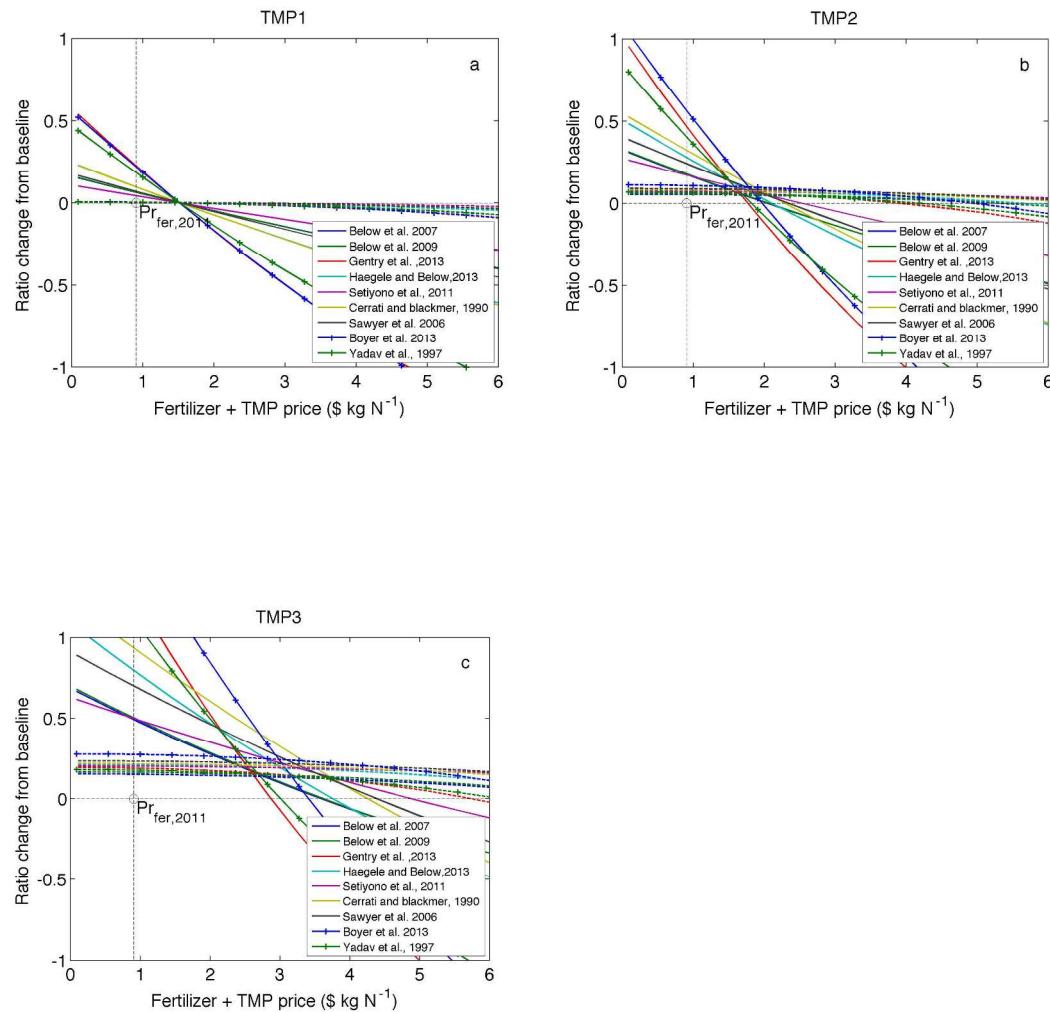

Figure S1 A summary of yield response functions reported in literatures for corn production in the US. Literatures used in Figure S1 are summarized in Table S1.

Figure S2 The impact of the TMP price on farmer profits and nitrogen fertilization rate using different baseline yield response functions reported in literatures for corn production in the US. Solid lines and dashed lines are the ratio change for farmer profits and fertilization rate respectively.

Figure S3 The impact of the TMP price on farmer profits and excess nitrogen using different baseline yield response functions reported in literatures for corn production in the US. Solid lines and dashed lines are the ratio change for farmer profits and excess nitrogen respectively.

Figure S4 The impact of the TMP price on farmer profits and planting area using different baseline yield response functions reported in literatures for corn production in the US. Solid lines and dashed lines are the ratio change for farmer profits and planting area respectively.

Reference:

Antle, J.M. and P.L. Pingali. 1994. Pesticides, productivity, and farmer health: A Philippine case study. *American Journal of Agricultural Economics* 76: 418-430.

Babcock, B.A. and G.R. Pautsch. 1998. Moving from uniform to variable fertilizer rates on Iowa corn: Effects on rates and returns. *J Agr Resour Econ*: 385-400.

Below, F.E., M. Urielarrea, M. Ruffo, S.P. Moose and A.W. Becker. 2007. Triple-stacks, genetics, and biotechnology in improving nitrogen use of corn. In *Proceedings of the 37th North Central Extension-Industry Soil Fertility Conference*. p. 5-13.

Below, F.E., J.W. Haegele and M.L. Ruffo. 2009. Technology and Biotechnology of Nitrogen Use for High Yield Corn. In *Proceedings of the American Seed Trade Association annual meeting*. p. 13-22.

Berntsen, J., B.M. Petersen, B.H. Jacobsen, J.E. Olesen and N. Hutchings. 2003. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. *Agricultural Systems* 76: 817-839.

Boyer, C.N., J.A. Larson, R.K. Roberts, A.T. McClure, D.D. Tyler and V. Zhou. 2013. Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, and Corn after Soybeans. *Journal of Agricultural and Applied Economics* 45.

Cerrato, M.E. and A.M. Blackmer. 1990. COMPARISON OF MODELS FOR DESCRIBING CORN YIELD RESPONSE TO NITROGEN-FERTILIZER. *Agronomy Journal* 82: 138-143.

Del Grosso, S.J., A.D. Halvorson and W.J. Parton. 2008. Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. *Journal of Environmental Quality* 37: 1383-1389. doi:Doi 10.2134/jeq2007.0292.

Gentry, L.F., M.L. Ruffo and F.E. Below. 2013. Identifying Factors Controlling the Continuous Corn Yield Penalty. *Agronomy Journal* 105: 295-303. doi:Doi 10.2134/Agronj2012.0246.

Haegele, J.W. and F.E. Below. 2013. Transgenic corn rootworm protection increases grain yield and nitrogen use of maize. *Crop Science* 53: 585-594.

Horowitz, J.K. and E. Lichtenberg. 1993. Insurance, moral hazard, and chemical use in agriculture. *Am. J. Agric. Econ.* 75: 926-935.

Huang, W.-y. and M. LeBlanc. 1994. Market-based incentives for addressing non-point water quality problems: a residual nitrogen tax approach. *Rev. Agr. Econ.* 16: 427-440.

Isik, M. 2002. Resource management under production and output price uncertainty: implications for environmental policy. *American Journal of Agricultural Economics* 84: 557-571.

Isik, M. and M. Khanna. 2003. Stochastic technology, risk preferences, and adoption of site-specific technologies. *American Journal of Agricultural Economics* 85: 305-317.

Janssen, S. and M.K. van Ittersum. 2007. Assessing farm innovations and responses to policies: a review of bio-economic farm models. *Agricultural Systems* 94: 622-636.

Knapp, K.C. and K.A. Schwabe. 2008. Spatial dynamics of water and nitrogen management in irrigated agriculture. *American journal of agricultural economics* 90: 524-539.

Larson, D.M., G.E. Helfand and B.W. House. 1996. Second-best tax policies to reduce nonpoint source pollution. *American Journal of Agricultural Economics* 78: 1108-1117.

Mapp, H., D. Bernardo, G. Sabbagh, S. Geleta and K. Watkins. 1994. Economic and environmental impacts of limiting nitrogen use to protect water quality: A stochastic regional analysis. *American Journal of Agricultural Economics* 76: 889-903.

Mérel, P., F. Yi, J. Lee and J. Six. 2014. A regional bio-economic model of nitrogen use in cropping. *American Journal of Agricultural Economics* 96: 67-91.

Preckel, P.V., G.E. Shively, T.G. Baker, M.-C. Chu and J.E. Burrell. 2000. Contract incentives and excessive nitrogen use in agriculture. *J Agr Resour Econ*: 468-484.

Sawyer, J.E., E.D. Nafziger, G.W. Randall, L.G. Bundy, G.W. Rehm and B.C. Joern. 2006. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn. Iowa State University Extension, Ames, IA.

Setiyono, T.D., H. Yang, D.T. Walters, A. Dobermann, R.B. Ferguson, D.F. Roberts, et al. 2011. Maize-N: A Decision Tool for Nitrogen Management in Maize. *Agronomy Journal* 103: 1276-1283. doi:Doi 10.2134/Agronj2011.0053.

Sheriff, G. 2005. Efficient waste? Why farmers over-apply nutrients and the implications for policy design. *Applied Economic Perspectives and Policy* 27: 542-557.

Watkins, K.B., Y.-c. Lu and W.-y. Huang. 1998. Economic and environmental feasibility of variable rate nitrogen fertilizer application with carry-over effects. *J Agr Resour Econ*: 401-426.

Yadav, S.N., W. Peterson and K.W. Easter. 1997. Do farmers overuse nitrogen fertilizer to the detriment of the environment? *Environmental and Resource Economics* 9: 323-340.